MEDIO AMBIENTE Y DESARROLLO

Escenarios hidrológicos de caudales medios del río Paraná y Uruguay

Vicente Barros

ш 154

MEDIO AMBIENTE Y DESARROLLO

Escenarios hidrológicos de caudales medios del río Paraná y Uruguay

Vicente Barros

œ

Este documento fue preparado por Vicente Barros, consultor de la División de Desarrollo Sostenible y Asentamientos Humanos de la Comisión Económica para América Latina y el Caribe (CEPAL), y forma parte de los estudios sectoriales realizados en el marco de las actividades del proyecto CEPAL/Estudio regional de la economía del cambio climático (ERECC) en América Latina y el Caribe— iniciativa encabezada por la CEPAL—, en particular, del estudio de la economía del cambio climático en la Argentina, realizado bajo la coordinación de Osvaldo Girardín a nivel nacional y de Joseluis Samaniego, Director de la División de Desarrollo Sostenible y Asentamientos Humanos de la CEPAL, con la colaboración de Carlos de Miguel, Luis Miguel Galindo, Mauricio Pereira y Karina Martínez. El ERECC contó con el apoyo y colaboración financiera de los Gobiernos de Alemania, Dinamarca, España y el Reino Unido, así como de la Unión Europea y el Banco Interamericano de Desarrollo (BID). Las opiniones expresadas en este documento, que no ha sido sometido a revisión editorial, son de exclusiva responsabilidad del autor y pueden no coincidir con las de la organización.

Los límites y los nombres que figuran en los mapas no implican su apoyo o aceptación oficial por las Naciones Unidas.

Publicación de las Naciones Unidas ISSN 1564-4189 LC/L.3741 Copyright © Naciones Unidas, noviembre de 2013. Todos los derechos reservados Impreso en Naciones Unidas, Santiago de Chile

Los Estados miembros y sus instituciones gubernamentales pueden reproducir esta obra sin autorización previa. Solo se les solicita que mencionen la fuente e informen a las Naciones Unidas de tal reproducción.

Índice

Resu	men		
Intro	ducción		g
		del Plata	
		s de caudales observados en la Cuenca del Plata	
		del modelado hidrológico	
I.	El modelado hidrológico		
		VIC	
		ráficos	
		orológicos e hidrológicos	
Π.	Calibración v va	alidación	19
		у	
	_		
		ay	
Ш.	Sensibilidad a lo	os cambios climáticos	25
IV.	Escenarios hidr	ológicos	29
		itación	
		ratura	
		nguay	
		raná	
IV.	Conclusiones		49
Bibli	ografía		51

Anexo A	poyo a las actividades de coordinación	53
Serie Medio	Ambiente y Desarrollo: números publicados	55
Índice de cua	dros	
CUADRO 1	CAUDALES MEDIOS ANUALES EN M3/S DEL PERÍODO 1960/1999	9
CUADRO 2	LOS 12 TIPOS DE CUBIERTA VEGETAL CONSIDERADOS	
	EN LA APLICACIÓN DEL MODELO VIC	
CUADRO 3	ESTACIONES DE AFORO	17
CUADRO 4	CAUDALES MEDIOS ANUALES OBSERVADOS Y MODELADOS	
	CON DATOS DE PRECIS EN EL PERÍODO 1990-1994 PARA ESTACIONES SOBRE EL RÍO PARANÁ	21
CUADRO 5	CAUDALES Y VARIACIONES RELATIVAS, CON RESPECTO	21
COADRO	AL PERÍODO 1990/1999 EN TRES ESTACIONES ARGENTINAS	27
CUADRO 6	ESCENARIOS DE CAUDALES EN SALTO GRANDE Y SUS RESPECTIVAS	
	VARIACIONES PORCENTUALES CON RESPECTO	
	AL PERÍODO DE REFERENCIA	37
CUADRO 7	ESCENARIOS DE CAUDALES EN POSADAS Y SUS RESPECTIVAS	
	VARIACIONES CON RESPECTO AL PERÍODO DE REFERENCIA	41
CUADRO 8	ESCENARIOS DE CUADALES EN CORRIENTES Y SUS RESPECTIVAS	
	VARIACIONES PORCENTUALES CON RESPECTO AL PERÍODO DE REFERENCIA	
	AL PERIODO DE REFERENCIA	44
Índice de grá	ficos	
GRÁFICO 1	MARCHAS DE CUADALES MEDIOS MENSUALES OBSERVADOS	
Old Blood	Y MODELADOS PARA LA ETAPA DE VALIDACIÓN (1991-1995)	
	EN SALTO GRANDE	20
GRÁFICO 2	MARCHA ANUAL DE CAUDALES MEDIOS MENSUALES OBSERVADOS	
	Y MODELADOS PARA TODA LA SERIE (1990-1999)	
	EN SALTO GRANDE	20
GRÁFICO 3	MARCHA ANUAL DE CAUDALES MEDIOS MENSUALES	
GRÁFICO 4	OBSERVADOS Y MODELADOS (1990-1994) EN JUPIÁ	21
GRAFICO 4	MARCHA ANUAL DE CAUDALES MEDIOS MENSUALES OBSERVADOS Y MODELADOS (1990-1994) EN INTAPÚ	22
GRÁFICO 5	MARCHA ANUAL DE CAUDALES MEDIOS MENSUALES	22
Old II 100 3	OBSERVADOS Y MODELADOS (1990-1994) EN POSADAS	22
GRÁFICO 6	MARCHA ANUAL DE CAUDALES MEDIOS MENSUALES	
	OBSERVADOS Y MODELADOS (1990-1994) EN CORRIENTES	23
GRÁFICO 7	MARCHA ANUAL DE CAUDALES MEDIOS MENSUALES	
	OBSERVADOS Y MODELADOS (1990-1994) EN ASUNCIÓN	24
GRÁFICO 8	ESCENARIOS DE CAUDAL MEDIO ANUAL EN SALTO GRANDE	37
GRÁFICO 9	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
	Y MÁXIMOS DE LA DÉCADA 2016/2025 EN SALTO GRANDE	20
GRÁFICO 10	PARA EL ESCENARIO A2 HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
Old II ICO IV	Y MÁXIMOS DE LA DÉCADA 2046/2055 EN SALTO GRANDE	
	PARA EL ESCENARIO A2	38
GRÁFICO 11	PARA EL ESCENARIO A2 HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
	Y MÁXIMOS DE LA DÉCADA 2046/2055 EN SALTO GRANDE	
	PARA EL ESCENARIO B2	39
GRÁFICO 12		
	Y MÁXIMOS DE LA DÉCADA 2091/2100 EN SALTO GRANDE	
CDÁETCO 12	PARA EL ESCENARIO A2	39
GRÁFICO 13	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS Y MÁXIMOS DE LA DÉCADA 2091/2100 EN SALTO GRANDE	
	DADA EL ESCENADIO DO	40

GRÁFICO 14 GRÁFICO 15	ESCENARIOS DE CAUDAL MEDIO ANUAL EN POSADASHIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	41
	Y MÁXIMOS DE LA DÉCADA 2016/2025 EN POSADAS	
	PARA EL ESCENARIO A2	42
GRÁFICO 16	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS Y	
	MÁXIMOS, DE LA DÉCADA 2046/2055 EN POSADAS	
(PARA EL ESCENARIO A2	42
GRÁFICO 17	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS Y	
	MÁXIMOS, DE LA DÉCADA 2046/2055 EN POSADAS	40
on irroo to	PARA EL ESCENARIO B2	43
GRÁFICO 18	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
	Y MÁXIMOS, DE LA DÉCADA 2091/2100 EN POSADAS	42
GRÁFICO 19	PARA EL ESCENARIO A2 HIDŖOGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	43
GRAFICO 19	Y MÁXIMOS, DE LA DÉCADA 2091/2100 EN POSADAS	
	PARA EL ESCENARIO B2	44
GRÁFICO 20	ESCENARIOS DE CUADAL MEDIO ANUAL EN CORRIENTES	44
GRÁFICO 21	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	43
GRAFICO 21	Y MÁXIMOS DE LA DÉCADA 2016/2025 EN CORRIENTES	
	PARA ELESCENARIO A2	45
GRÁFICO 22	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
Old II 100 LL	Y MÁXIMOS DE LA DÉCADA 2046/2055 EN CORRIENTES	
	PARA EL ESCENARIO A2	46
GRÁFICO 23	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
	Y MÁXIMOS DE LA DÉCADA 2046/2055 EN CORRIENTES	
	PARA EL ESCENARIO B2	46
GRÁFICO 24	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
	Y MÁXIMOS DE LA DÉCADA 2091/2100 EN CORRIENTES	
	PARA EL ESCENARIO A2	47
GRÁFICO 25	HIDROGRAMA MEDIO, VALORES MENSUALES MÍNIMOS	
	Y MÁXIMOS DE LA DÉCADA 2091/2100 EN CORRIENTES	
	PARA EL ESCENARIO B2	47
Índice de diag	ramas	
DIAGRAMA 1	ESQUEMA DE LA RUTA DE LOS FLUJOS DE AGUA	
DIAGRAMA	GENERADOS EN LOS PUNTOS DE RETÍCULA	14
	GENERADOS EN EOST GIVIOS DE RETICOLA.	
Índice de mapa	as	
MAPA 1	LA CUENCA DEL PLATA	10
MAPA 2	LOCALIZACIÓN DE LAS ESTACIONES CON DATOS DE TEMPERATURA	
	Y PUNTOS DE CIERRE DE LAS CUENCAS	16
MAPA 3	ESTACIONES PLUVIOMÉTRICAS	17
MAPA 4	CAMBIO DE PRECIPITACIÓN MEDIA ANUAL PARA EL PERÍODO	
	2020-2040 RESPECTO DE 1961-2000 PARA EL ESCENARIO A1B,	
	DERIVADO DE UN ENSAMBLE DE 14 MCGS, VERSIÓN 2006	26
MAPA 5	CAMBIO DE TEMPERATURA MEDIA ANUAL PARA EL PERÍODO	
	2020-2040 RESPECTO DE 1961-1990 PARA EL ESCENARIO A1B.	
	DERIADO DE UN ENSAMBLE DE 14 MCGS, VERSIÓN 2006	26
MAPA 6	COEFICIENTE DE CORRECIÓN DE LOS VALORES ANUALES	
	DE PRECIPITACIÓN DEL MODELO PRECIS COMO RESULTADO	
	DE SU COMPARACIÓN CON LOS CAMPOS BASADOS EN DATOS	
	OBSERVADOS EN EL PERÍODO 1960/1990	30
MAPA 7	ESCENARIO DE PRECIPITACIÓN MEDIA ANUAL PARA EL	
	ESCENARIO A2 EN EL PERÍODO 2020/2029	30

31
21
21
1
32
33
34
35
36

Resumen

Los caudales medios de los grandes ríos de la Cuenca del Plata tuvieron un notable incremento, un 35 % entre 1951-1970 y 1980-1999. Cabe la pregunta si estos cambios de caudales medios se mantendrán durante las próximas décadas en un contexto de cambio climático global. El factor climático más importante es la precipitación media anual, su distribución estacional y regional, pero también es importante la evaporación que depende tanto de la lluvia como de la temperatura.

El modelo PRECIS muestra escenarios con importantes incrementos de precipitación sobre casi toda la cuenca a lo largo del siglo XXI. Pero para la Cuenca del Plata dan en promedio incrementos más moderados, y algunos de ellos reducciones. Por su parte, el modelo hidrológico VIC (Variable Infiltration Capacity) que representa muy bien los caudales en el río Uruguay, su comportamiento no es tan bueno en la cuenca superior del Paraná, pero mediante ajustes empíricos se logró reproducir los valores medios y el hidrograma medio anual. Aún con estos ajustes no es capaz de representar los caudales del río Paraguay, el cual es de dificil modelado por la baja pendiente que domina su cuenca.

En el caso del río Uruguay, en un escenario de calentamiento moderado no habría mayores cambios en los caudales y éstos disminuirían en un 15 % hacia fin de siglo. Por el contrario, si se acepta el escenario climático PRECIS con aumentos de lluvia, que no estarían totalmente compensados por

预览已结束,完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5 1052

