lssue No. 286 - Number 06 / 2010

FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN

Towards low-carbon transportation infrastructures

Introduction

It is estimated that transportation is responsible for 13% of all greenhouse gas emissions worldwide and 24% of the CO_2 associated with burning fossil fuels. The challenges posed by climate change have thus added to the urgency of developing low-carbon transportation.

There are three broad strategic goals for achieving this end. The first consists of avoiding demand by transportation. The second seeks to shift transportation towards cleaner modes, especially from private automobiles to walking, bicycles and public transit. The third calls for more efficient technologies.

Achieving these goals requires policies that address all emission sources associated with transportation. But the focus has traditionally been on controlling direct emissions, that is, those associated with the propulsion of vehicles (automobiles, buses, trains, aircraft and ships). Although such emissions account for a large part of transportation emissions, such a focus overlooks certain indirect emissions associated with activities that make vehicle propulsion possible.

To help fill this gap and further the progress being made toward low-carbon transportation systems in Latin America, this document provides a rationale for promoting the development of low-carbon transportation infrastructures. Taking a broad view of transportation infrastructure that encompasses not only its fixed, physical components but also what it is used for, for the purposes of this document a low-carbon transportation infrastructure is one that minimizes the carbon emissions associated with providing and operating that infrastructure.

With these goals in mind, this document is divided into five sections including this introduction. To contextualize the need to focus on the relevance of low-carbon transportation infrastructures, the following section provides background on the current demands for moving towards a low-carbon economy and on how to move towards low-carbon transportation. The next section provides a specific definition of a low-carbon transportation infrastructure, lists emission sources associated with it and summarizes a methodology for calculating its life-cycle emissions. The last section uses hypothetical examples to show how to calculate the life-cycle emissions of two infrastructure options for a specific transportation service: a road and a railway. The document ends with some broad recommendations.

This bulletin discusses the importance of low-carbon transportation infrastructures for the integrated development of the region. It is part of the work being done by the Unit on the project for environmental innovation in urban services and infrastructure: towards a carbonfree economy, funded by the Spanish Agency for International Development Cooperation (AECID). The author is Edmundo Claro, consultant, Infrastructure Services Unit.

For additional information, please contact trans@cepal.org.

Low-carbon transportation infrastructure

1. Definition

"The word 'infrastructure' originated in military parlance, referring to fixed facilities such as air bases. Today it is used to mean any important, widely shared, human-built resource" (Edwards, 2003). For example, NZIER (2004) notes that infrastructure is a set of assets that can only be changed by means of large, abrupt increments in capacity, with risks of non-utilization, high fixed costs and low marginal costs, with many users. According to the United Nations (2007), infrastructures are capitalintensive, long-lasting networks and structures that directly support economic production.

Also according to the United Nations (2007), infrastructures usually include public utilities (such as water supply and electricity), public works (streets and dams), transportation services (like railways and ports) and sanitation services (sewers and waste disposal, among others). Infrastructures thus support growth and development, with services that act as inputs for other productive processes (such as energy and transportation) or as products for final consumption (like drinking water and sanitation).

Because infrastructures profoundly condition user consumption patterns, choosing which ones are made and how they are designed will have a significant effect on energy consumption and the level of carbon emissions over the coming decades (Li and Colombier, 2009).¹ Developing low-carbon infrastructure will thus help pave the way for a low greenhouse gas emission economy (Scottish Government, 2010).

So, taking a broad view of a transportation infrastructure that includes not only its fixed physical components but also what it is used for, a low-carbon transportation infrastructure is one that minimizes the carbon emissions associated with providing and operating it. From this viewpoint, alow-carbon infrastructure is one whose carbon emissions are lower than the infrastructure alternatives available for providing a specific transportation service.

2. Emissions associated with a transportation infrastructure

The contribution of transportation to global warming is well known, but policies have tended to focus on controlling direct emissions (i.e., those associated with propulsion) from vehicles (automobiles, buses, trains, aircraft and ships) (Chester and Horvath, 2009; Jonsson, 2007). Although such emissions account for a large part of transportation emissions, such a focus overlooks certain indirect emissions associated with the activities that make vehicle propulsion possible. Noteworthy among these activities are those within the life cycle of vehicles, the fuels that propel vehicles, and the corresponding infrastructures (Chester and Horvath, 2009; Lenzen, 1999; Miliutenko, 2010).

For example, a study on passenger transportation in the United States shows that the "direct indirect emissions" per passenger-kilometre-travelled account for nearly 30% of total emissions for road transport, 60% for rail transport and 20% for air transport (Chester and Horvath, 2009). A study on road transportation in Sweden shows that indirect consumption accounts for 45% of total energy consumption, per the following breakdown: vehicle manufacture and maintenance, 14%; fuel production and distribution, 9%; infrastructure construction and servicing, 22% (Jonsson, 2007).

So, transportation infrastructure decisions that seek to advance towards a low-carbon system should be based on a broad approach to potential solutions that takes into account the total emissions (direct + indirect) associated with providing and operating each one. It is therefore necessary to estimate the direct emissions associated with vehicle propulsion and the indirect emissions associated with vehicle, fuel and infrastructure life cycle. Figure 1 shows this graphically.

All of these emissions are relevant for decision-making purposes, but for the sake of brevity and clarity the following section explains how to estimate life-cycle emissions just for infrastructures without going into those associated with the propulsion of the vehicles that use them, vehicle life cycle or fuel life cycle.

	Figure 1	
Total emissions of	a transportation	infrastructure

Emissions	Indirect		+	Direct	=	Total	
	t	†	1		1		
Source	Infrastructure life cycle	Vehicle life cycle	Fuel life cycle		Vehicle propulsion		
Function	Provision	Operation					

Source: Prepared by the authors.

¹ For example, emphasizing the building of highways that encourage the use of private automobiles instead of the development of public transit systems will create an enormous future demand for fossil fuels for personal transportation modes, and carbon emissions will continue to grow (United Nations, 2007).

I. Methodology for calculating transportation infrastructure life-cycle emissions

According to Forum for the Future (2009), there are four phases in assessing an infrastructure's life-cycle carbon emissions. They are:

- defining the purpose of the analysis;
- developing the infrastructure life-cycle flow chart;
- gathering data; and
- calculating emissions.

1. Defining the purpose of the analysis

In this phase, the reason for including carbon emissions in the decision-making process is defined and the product or service to be analysed is determined. It is also decided how the findings are to be interpreted and reported so that they will make sense and be useful. In other words, the findings should be organized on the basis of a functional unit describing the use of the service under study (SAIC, 2006).

2. Developing the infrastructure life-cycle flow chart

There are several stages in the life of an infrastructure. Each stage in turn involves inputs, processes and outputs. This phase of the analysis thus seeks to identify all the inputs, processes and outputs that contribute to the life cycle of the infrastructure under review. Studies show that an infrastructure's life-cycle emissions come, basically, from four stages and the transportation requirements between them: (a) manufacture of construction materials; (b) infrastructure construction; (c) infrastructure operation; and (d) infrastructure end of life (see figure 2).²

Below is a brief description of the infrastructure life-cycle stages and of the inputs, processes and outputs that generate carbon emissions.

Manufacture of construction materials

This stage includes obtaining the raw materials that will be used to manufacture the products for building the infrastructure, transporting them to the manufacturing site, manufacturing the construction materials and distributing them to the construction site. The manufacture of materials consists of transforming the raw materials into products that can be used to build infrastructure.

Infrastructure construction

During the infrastructure construction stage, the infrastructure components are assembled from the products manufactured in the preceding stage. This includes activities such as preparing the land; moving materials and machinery; building roadways; installing offices, signage, piping, lighting and other components; and moving workers to and from the construction site.

Infrastructure operation

Running and maintaining an infrastructure are the activities associated with the operation stage. The activities involved in operating an infrastructure, such as lighting, cleaning and accident control, make it possible to use the infrastructure. Maintenance involves replacing corroded components, painting structures, and improving the pavement, among other activities.

Infrastructure end of life

This stage of the infrastructure life cycle usually begins with demolition and continues with management of the resulting waste materials. This stage thus includes emissions generated while demolishing the infrastructure, transporting the refuse to a dump or a recycling plant and disposing of or recycling the refuse.

3. Gathering data

Two kinds of data are needed to calculate the carbon emissions of an infrastructure: those related to activity, and emission factors. Data on activity refer to all material inputs and outputs, energy used and the transportation involved in the life cycle defined for the infrastructure. Emission factors provide the link that converts these amounts into the resulting carbon emissions: the amount of carbon emitted per "unit" of data for an activity (example: CO₂/kg or CO₂/kWh) (BSI, 2008).

Both kinds of data can come from primary or secondary sources. Primary data refer to direct measurements of the supply chain for the infrastructure in question. Secondary data refer to indirect measurements that are not specific to the infrastructure in question but rather reflect an average or general measurement for similar processes or materials. While it is generally recommended to use

² This definition of the stages of an infrastructure's life cycle and the explanation of each one come from a review of the following sources: AIA (2010); Collin and Fox (2010); Dai and Tang (2006); Jonsson (2007); Miliutenko (2010); Park et al. (2003); Treloar, Love and Crawford (2004); Torkington and Ulfves (2008).

primary data as much as possible because they provide a better understanding of actual emissions, secondary data must be used when primary data are unavailable or might be unreliable (BSI, 2008).

4. Calculating emissions

The equation for estimating the carbon emissions of the infrastructure in question is the sum of all the data on the activity (all material inputs and outputs, all energy used, all transport and all physical changes in the landscape) associated with all of the infrastructure life-cycle activities,

multiplied by their respective emission factors. In other words, the calculation per se merely consists of multiplying the data for each activity by the appropriate emission factors according to the following diagram:

Source: Prepared by the authors.

Example ³

To illustrate this methodology, set out below is a summary of the estimate and a comparison of the emissions associated with the development of passenger transportation infrastructure alternatives for linking two population centres that are 9.68 kilometres apart.⁴ The first alternative is a road that would primarily be for private vehicles. The second is a passenger railway. Table 1 summarizes the main features of both infrastructures.

Footuro	Infrastructure			
reature	Road	Railway		
Mode	Average diesel-powered sedan	ICE 2 electric high-speed train		
Length	9.68 km	9.68 km		
Width	10 m	6 m		
Frequency	2 000 trips/day (1 000 outbound and 1 000 return)	10 trips/day (5 outbound and 5 return)		
Load	1 passenger/trip	150 passengers/trip		
Performance	36 500 000 passengers	27 375 000 passengers		
Fuel	Diesel	Electricity		
Consumption	0.09 litres/km	20 kwh/km		
Useful life	50 years	50 Years		

Table 1

Source: Prepared by the authors.

4

1. Defining the purpose of the analysis

The purpose of the analysis is to evaluate and compare lifecycle stage carbon emissions and their emission sources for the road and railway depicted in the table above. Because the length of both infrastructures is the same (9.68 km), the functional unit chosen for evaluating the project is passenger transported.

2. Developing the infrastructure life-cycle flow chart

Like all infrastructure, the road and the highway have four life-cycle stages: (a) manufacture of construction materials; (b) construction; (c) operation; and (d) end of life. Table 2 shows the principal inputs and processes associated with these stages for both infrastructures.

3. Gathering data

Because the analysis is a hypothetical one, the data on the activity and emission factors come from secondary sources for both infrastructures. Tables 3 and 4 summarize the data gathered.

³ This example is from the summary of a hypothetical exercise developed for this study.

Details on the exercise are available in a document soon to be published by ECLAC.

⁴ This distance is from Mpele et al. (2010), who analyze the energy requirements for a road link between northern Cameroon and southeastern Chad.

Table 2 Infrastructure inputs and processes

Stage	Infrastructure		
	Road	Railway	
Manufacture of construction materials	Aggregates Concrete Asphalt	Aggregates Concrete Steel Wood	
Construction	Preparing the land Building the structure Paving	Preparing the land Building the embankment Laying sleepers and rails	
Operation	Pavement maintenance	General infrastructure maintenance	
End of life	Demolition Disposal of refuse in a landfill	Demolition Disposal of refuse in a landfill	

Source: Prepared by the authors.

Table 3 Data for the road

Stage	Emission source	Data on the activity	Emission factor (kg CO ₂)	
Manufacture	Manufacturing asphalt	92 575 tons ^a	21.48/tons ^b	
of construction materials	Manufacturing concrete	111 tons ^a	4.13/tons ^b	
	Manufacturing aggregates	503 768 tons ^a	2.85/tons ^b	
	Transporting asphalt to construction site	92 575 tons ^a	1.05/Truck-km (empty on return) ^c	
Transporting concrete to the construction site		111 tons ^a	1.05/Truck-km (empty on return) ^c	
	Transporting aggregates to the construction site	503 768 tons ^a	1.05/Truck-km (empty on return) ^c	
Construction	Preparing the land	1 171 671 m³ ª	30/m ^{3 d}	
	Building the structure	314 901 m³ ª	30/m ^{3 d}	
	Paving	40 250 m ³ a	300/m ^{3 d}	
Operation	Pavement maintenance	18 515 tons per maintenance cycle ^e	136.57/tons ^f	
End of life	Demolition: tearing up the road	87 120 m ² a	7.78/m ^{2 g}	
	Demolition: moving materials	596 454 tons ^a	2.85/tons ⁹	
	Transporting refuse to landfill	596 454 tons ^a	1.05/Truck-km (empty on return) ^c	
	Disposing of asphalt in landfill	92 575 tons ^a	4.54/tons ^h	
	Disposing of concrete in landfill	111 tons ^a	0/tons ^h	
	Disposing of aggregates in landfill	503 768 tons ^a	0/tons ^h	

Source: Prepared by the authors.

^a Mpele et al. (2010).

^b Watkins (2009).

^c Stripple (2001).

Forum for the Future (2009).

预览已结束,完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_1734