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Abstract 

Artificial neural networks (ANNs) have been the catalyst to numerous 

advances in a variety of fields and disciplines in recent years. Their impact 

on economics, however, has been comparatively muted. One type of 

ANN, the long short-term memory network (LSTM), is particularly well-

suited to deal with economic time-series. Here, the architecture’s 

performance and characteristics are evaluated in comparison with the 

dynamic factor model (DFM), currently a popular choice in the field of 

economic nowcasting. LSTMs are found to produce superior results to 

DFMs in the nowcasting of three separate variables; global merchandise 

export values and volumes, and global services exports. Further 

advantages include their ability to handle large numbers of input features 

in a variety of time frequencies. A disadvantage is the inability to ascribe 

contributions of input features to model outputs, common to all ANNs. In 

order to facilitate continued applied research of the methodology by 

avoiding the need for any knowledge of deep-learning libraries, an 

accompanying Python library was developed using PyTorch: 

https://pypi.org/project/nowcast-lstm/. 
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1. Introduction 
 
A defining feature of the 21st century so far has been the explosion in both the volumes 
and varieties of data generated and stored (Domo, 2017). Almost every industry and 
aspect of life has been affected by this “data revolution” (Einav and Levin, 2014), 
(MacFeely, 2020). Simultaneously, rapid advancements in machine learning methods 
have been made, spurred on in part by the need for novel methods to analyze these new 
data quantities. Perhaps no methodology has gained greater prominence than the 
artificial neural network (ANN). ANNs are the engine behind tremendous leaps in fields 
as disparate as machine translation, image recognition, recommendation engines and 
even self-driving vehicles. Yet to date, their impact in the field of economic policy has 
been largely muted or exploratory in nature (Falat and Pancikova, 2015). 
 
This is not to suggest that economic data have been immune to the transformative forces 
of the data revolution. Quite the opposite in fact, as classical economic data series from 
national statistical offices (NSO) and other organizations can now be fortified by 
alternative data sources like never before, helping to provide glimpses into the 
developments of the global economy with unparalleled granularity and timeliness 
(Glaeser et al., 2017). The  COVID-19 pandemic and ensuing economic crisis 
showcased this, with analysts and policy-makers gaining insight to the rapidly evolving 
economic situation from such alternative data sources as Google mobility data 
(Yilmazkuday, 2021), booking information from dining apps (OpenTable, 2021) and 
transaction data from e-commerce sites (Statista, 2021), among many others. 
 
The availability of a broad range of novel, timely indicators should ostensibly have led to 
significant advances in the field of economic nowcasting, where real-time 
macroeconomic variables that may be published with a significant lag are estimated 
based on an array of more timely indicators (Banbura et al., 2010), (Giannone et al., 
2008). In reality, the field has not experienced the degree of progress seen in other fields, 
such as image recognition, in the past 10 years. A large factor in this relative stagnation 
is the fact that many of the issues facing nowcasting are not addressed by more data 
alone. Issues such as multicollinearity, missing data, mixed-frequency data and varying 
publication dates are sometimes even exacerbated by the addition of variables 
(Porshakov et al., 2016). As such, advancements in the field come from a combination 
of both new data and methodological developments. Dynamic factor models (DFM) in 
particular have been found to address many of the data issues inherent in nowcasting 
(Stock and Watson, 2002), and have been applied successfully in applications such as 
nowcasting economic growth in 32 countries (Matheson, 2011), nowcasting German 
economic activity (Marcellino and Schumacher, 2010) and nowcasting Canadian GDP 
growth (Chernis and Sekkel, 2017). The basic premise of DFMs is that one or more latent 
factors dictates the movement of many different variables, each with an idiosyncratic 
component in relation to the factor(s). With historical data, the factor(s) can be estimated 
from the variables. Subsequently, even in future periods where not all data are complete, 
the factor(s) can still be estimated and used to generate forecasts for variables that are 
not yet published, as each variable’s relation to the factor(s) has already been estimated. 
 
Despite DFMs’ strengths in addressing a wide swath of nowcasting’s data issues, the 
impressive performance of ANNs in other domains raises the question of their 
performance in nowcasting. ANNs have been applied to economic nowcasting in the past 
(Loermann and Maas, 2019). However, due to the time-series nature of many economic 
nowcasting applications, the long short-term memory (LSTM) architecture is better suited 
to the problem than the traditional feedforward architecture explored in Loermann and 
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Maas (2019). LSTMs are an extension of recurrent neural network (RNN) architecture, 
which introduces a temporal component to ANNs. LSTMs have been used to nowcast 
meteorological events (Shi et al., 2015) as well as GDP (Kurihara and Fukushima, 2019).  
 
However, use of LSTMs in nowcasting economic variables remains in its infancy, 
perhaps partly due to high barriers to their implementation. Many common deep learning 
frameworks, including Keras and PyTorch, include provisions for LSTMs. However, the 
implementations are general and require knowledge of the frameworks to successfully 
implement. As such, a Python library focused on economic nowcasting has been 
published alongside this paper, available for install on PyPi: 
https://pypi.org/project/nowcast-lstm/. Hopefully, a more accessible library will help 
stimulate interest and expand the applications of these powerful models.  
 
The remainder of this paper is structured as follows: the next section will further explain 
nowcasting and its challenges; section three will explore LSTMs in more detail; section 
four will examine the LSTM’s empirical performance compared with DFMs in nowcasting 
three series: global merchandise trade exports expressed in both values and volumes 
and global services exports; section five will introduce and explain the accompanying 
Python library; the final section will conclude and examine areas of future research. 
 

2. Exposition of nowcasting problem 
 
Nowcasting, a portmanteau of “now” and “forecast”, is the estimation of the current, or 
near to it either forwards or backwards in time, state of a target variable using information 
that is available in a timelier manner. Keith Browning coined the term in 1981 (WMO, 
2017) to describe forecasting the weather in the very near future based on its current 
state. The concept and term remained in the meteorological domain for years before 
being adopted into the economic literature in the 2000s. The concept of real-time 
estimates of the macroeconomic situation predates the adoption of the nowcasting 
terminology, as evidenced by Mariano and Murasawa (2003). However, Giannone et al. 
(2005) explicitly referenced the term “nowcasting” in its title and the term became 
commonplace in subsequent years, being applied for example to Portuguese GDP in 
2007 (Morgado et al., 2007) and to Euro area economic activity in 2009 (Giannone et al., 
2009). The 2010s saw a wealth of papers examining the topic both for a range of target 
variables as well as with a range of methodologies and models. Targets most often 
included GDP (Rossiter, 2010), (Bok et al., 2018), and trade (Cantú, 2018), (Guichard 
and Rusticelli, 2011). Common methodologies include dynamic factor models (DFM) 
(Guichard and Rusticelli, 2011),  (Antolin-Diaz et al., 2020), mixed data sampling 
(MIDAS) (Kuzin et al., 2009), (Marcellino and Schumacher, 2010) and mixed-frequency 
vector autoregression (VAR) (Kuzin et al., 2009), among others. Nowcasting also has 
relevance in the context of the 2030 Agenda for Sustainable Development (UN, 2015). 
Many indicators face issues in terms of data quality, availability, timeliness, or all three. 
As such, nowcasting is being discussed as a possible method of ensuring maximum 
coverage in terms of indicators (UNSD, 2020). 
 
Economic nowcasting is generally confronted with three main issues regarding data. The 
first is mixed frequency data, or when all independent variables and the dependent 
variable are not recorded with the same periodicity. This occurs frequently in economic 
data, for instance when trying to nowcast a quarterly target variable, such as GDP 
growth, using monthly indicators. Or estimating a yearly target variable with a mixture of 
monthly and quarterly variables. The second is the heterogeneous publication schedules 
of independent variables, frequently referred to as “ragged-edges”. Any nowcasting 
methodology must provide provisions for incomplete or partially complete data, as 

https://pypi.org/project/nowcast-lstm-dhopp1/
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varying availability of latest data is the reality of most datasets of economic series. 
Finally, there is the issue of the “curse of dimensionality”, which renders many classical 
econometric methods less effective in the nowcasting context and hinders the application 
of “big data” to the field (Buono et al., 2017). The problem stems from the nature of many 
economic variables, where they may have few observations relative to the potential pool 
of explanatory variables or features. The quarterly target series for UNCTAD’s own 
nowcasts for global merchandise trade, for instance, only began in 2005 (Cantú, 2018). 
That leaves only 60 observations for training a model at the end of 2020. Meanwhile, 
many more than 60 potential independent variables can be conceived of to estimate a 
model of global merchandise trade.  
 
The nowcasting methodologies previously mentioned address these problems in varying 
ways to achieve better predictions, and LSTMs are no different. The following section 
will provide background information on their network architecture as well as the 
characteristics that allow them to address the aforementioned nowcasting data 
problems. 
 

3. ANN and LSTM models 
 
3.1 ANNs and RNNs 
 
ANNs are made up of various inter-connected layers composed of groups of nodes or 
neurons. The structure's conceptual similarity to the biological sort is the source of their 
name. Each of these nodes receives inputs either from the external data source, the 
"input layer", or from previous layers, “hidden” and “output” layers, the latter if the final 
output of the model. The output of a node is found by taking the weighted sum of all its 
inputs, the connections between individual nodes being the weights, and then running it 
through a non-linear activation function. In training, these weights are initially 
randomized, and when the data has passed through all layers of the network, an output 
is obtained, which is then run through a predefined cost function to assess performance. 
Then, using calculated gradients, or derivatives of the cost function, the network adjusts 
its weights to obtain an output with a smaller error, and the process is repeated.  
 
This is of course an oversimplification of the process, however, there exists a vast 
literature outlining and explaining the methodology of ANNs for those desiring a deeper 
examination of their mathematics. Those interested can see Sazli (2006), Singh and 
Prajneshu (2008), or even Loermann and Maas (2019) for an explanation in the 
nowcasting context. 
 
Traditional feedforward ANNs have a long history of use in time series forecasting 
(Kohzadi et al., 1996). These models, however, lack an explicit temporal aspect. This 
can be introduced to their architecture, resulting in recurrent neural networks (RNN) 
(Amidi and Amidi, 2019). As opposed to the unidirectional relationship between inputs 
and outputs in feedforward networks, RNNs introduce a feedback loop, where layer 
outputs can be fed back into the network (Stratos, 2020), (Dematos et al., 1996). This 
architecture makes RNNs well-suited to applications with a temporal aspect or flow, such 
as natural language processing or speech processing. However, due to vanishing 
gradients, RNNs tend to have a very “short” memory, limiting their usefulness in the 
nowcasting application (Grosse, 2017). 
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3.2 LSTMs 
 
LSTMs introduce a memory cell and three gates: an input, output and forget gate (Chung 
et al., 2014). Crucially, this architecture then allows gradients to flow unchanged through 
the network, mitigating the vanishing gradient problem of RNNs and rendering them 
more suitable for application to the nowcasting problem. Data input to the LSTM network 
has the shape of number of observations x number of timesteps x number of features. 
The addition of the timesteps dimension allows the model to be trained on multiple lags 
of each variable, rather than just cotemporaneous observations.  
 
LSTMs’ ability to address the first common nowcasting data issue, mixed frequency data, 
stems from ANNs’ ability to learn complex, non-linear relationships in data, a product of 
multiple neuron layers coupled with non-linear activation functions. More information on 
activation functions and their role in ANNs can be found in Sharma et al. (2020). As such, 
mixed frequency data can be fed to the network in the highest frequency available, with 
lower frequency data having missings at time periods where data are not published. 
These missing data can then be filled using a variety of approaches, including with the 
mean, the median, with values sampled from a distribution (Ennett et al., 2001), or with 
other more complex methods (Smieja et al., 2019). In the analysis performed in this 
paper, mean replacement was chosen and implemented in the accompanying Python 
library due to simplicity and empirical performance, as the network learns to recognize 
these in-between values as containing no novel information. 
 
LSTMs are able to address the ragged-edges problem through no special mechanism 
other than standard missing-filling methods. These include using ARMA or VAR models 
to fill in ragged-edges (Kozlov et al., 2018), as well as using the mean or Kalman filters 
(Doz et al., 2011). The method chosen in the context of LSTM nowcasting can be 
considered a hyper-parameter to be tuned and tested empirically. At the time of writing, 
the Python library supports ARMA filling and any n-to-1 series transformation, e.g., 
mean, median, etc. ARMA filling was used in the analysis performed in this paper due to 
superior empirical performance compared with other methods. 
 
The last major problem of nowcasting, the curse of dimensionality, is partially addressed 
by LSTMs’ efficiency compared with other methods, i.e. their computation time scales 
very slowly with the number of variables (Hochreiter and Schmidhuber, 1997), as 
evidenced by Figure 1. 
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The figure illustrates the development in computation time as more features are added 
for the LSTM model and two R implementations of the DFM; nowcastDFM (Hopp and 
Cantú, 2020) and nowcasting (Marcolino de Mattos, 2019). The DFMs’ computation time 
scales exponentially while the LSTM’s time remains nearly constant. The DFM and 
LSTM both scale linearly with the number of observations, however. The target variable 
was global merchandise exports in values and the various independent variables were 
a sample from the same pool presented in section 4. However, for this illustrative case, 
it is the computation times that are of interest, which display the same general patterns 
independent of the specific values of the input data.  
 
As a result of this efficiency, a functional model can be trained with many more features 
than a DFM. Additionally, while standard methods of feature reduction such as principal 
component analysis (PCA) or Lasso can still be used on a data set intended for use with 
LSTM networks, their necessity is reduced due to ANNs’ robustness to multicollinearity 
(De Veaux and Ungar, 1994). 
 
Within the LSTM architecture, as in any ANN, there are many choices to be made 
regarding network architecture and hyper parameters. Some examples include the 
number of hidden states, the number of layers, the loss function and the optimizer, 
among many others. The logic for the defaults chosen for the Python library will be 
discussed in section 5. 

Figure 1. Development of model calculation time depending on number of features 
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4. Empirical analysis 
 
4.1 Description of data and models 
 
In order to assess the relative performance of LSTMs vs DFMs, three target variables 
were used: global merchandise exports in both value (WTO, 2020) and volume 
(UNCTAD, 2020a), and global services trade (UNCTAD, 2020a). These are the same 
series UNCTAD currently produces nowcasts for using DFMs (UNCTAD, 2020b: 20) and 
which were examined in a previous UNCTAD research paper (Cantú, 2018). The target 
series are all quarterly. A large pool of 116 mixed-frequency monthly and quarterly 
independent series was used to estimate each of the target series. These series are 
listed in Appendix 1, while more information on any individual series is available upon 
request. All series were converted to seasonally adjusted growth rates using the US 
Census Bureau’s X13-ARIMA-SEATS methodology (USCB, 2017). 
 
The DFM model used was the same examined in Cantú (2018) and currently in use by 
UNCTAD. In this model, the DFM is modeled in a state-space representation where it is 
assumed that the target and independent variables share a common factor as well as 
individual idiosyncratic components. The Kalman filter is then applied and maximum 
likelihood estimates of the parameters obtained. This is a common method of estimating 
DFMs and is explained in further detail in Bańbura and Rünstler (2011). The LSTM model 
used was that present in the nowcast_lstm Python library, which is further explained in 
section 5, using the average of 10 networks’ output with basic hyper-parameter tuning of 
the number of training episodes or epochs, batch size, number of hidden states, and 
number of layers. The logic of averaging the output of more than one network to obtain 
predictions is discussed further in section 5, but see Stock and Watson (2004) for a 
discussion of forecast combination. 
 

4.2 Modelling steps 
 
Hyper-parameter tuning of the LSTM and model performance was evaluated using a 
training set dating from the second quarter of 2005 to the third quarter of 2016. The test 
set dated from the fourth quarter of 2016 to the fourth quarter of 2019. 
 
A pool of independent variables was used to ensure the robustness of results, as either 
model could perform better on a single set of features due to chance. As such, the 
models’ performance was evaluated by taking random samples of between five and 20 
features, then fitting both an LSTM and DFM model on this same sample. Both methods’ 
performance was then evaluated on the test set via mean absolute error (MAE) and root-
mean-square error (RMSE) on five different data vintages, repeating the process 100 
times for each of the three target variables. In this manner, a distribution of relative 
performance over a wide breadth of independent variables could be obtained. The 
number of features was restricted to a maximum of 20 due to the high computational 
time of estimating DFMs with more than this number. 
 
Data vintages in this case refer to the artificial withholding of data to simulate what the 
availability of data would have looked like at different points in the past. This is important 
in evaluating model performance in the nowcasting context, as in real life series have 
varying publication schedules which nowcasting models must be robust to. The five 
vintages simulated were: two months before the target period, e.g. if the target was the 
second quarter of 2019, the data as it would have appeared in April 2019; one month 
before; the month of; a month afterwards; and two months afterwards. The model 
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