

UNEP SBCI Sustainable Buildings & Climate Initiative

> GREENHOUSE GAS EMISSION BASELINES AND REDUCTION POTENTIALS FROM BUILDINGS IN MEXICO

A Discussion Document

Copyright © United Nations Environment Programme, 2009

This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source.

No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme.

Disclaimer

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not necessarily represent the decision or the stated policy of the United Nations Environment Programme, nor does citing of trade names or commercial processes constitute endorsement.

UNEP

promotes environmentally sound practices globally. This document is published in electronic format only thereby eliminating the use of paper, ink, and transport emissions. You are encouraged print it only when absolutely necessary. UNEP will print the document on demand on 100% recycled paper.

GREENHOUSE GAS EMISSION BASELINES AND REDUCTION POTENTIALS FROM BUILDINGS IN MEXICO

A Discussion Document

UNEP DTIE Sustainable Consumption & Production Branch

15 Rue de Milan 75441 Paris CEDEX 09, France Tel: +33 1 4437 1450 Fax: +33 1 4437 1474 E-mail: unep.tie@unep.org www.unep.fr/scp/sun

Acknowledgements

This report was commissioned by the United Nations Environment Programme – Sustainable Buildings & Climate Initiative

Sponsored by:

Centre Scientifique et Technique du Bâtiment CSTB, France

Author:

Odón de Buen R., M.Sc.¹

Expert Review Panel:

Mr Arturo Echeverría	Asociación de Empresas para el Ahorro en la Edificación (AEAEE)	
Ms. Astrid Bolbrugge	Instituto del Fondo Nacional de la Vivienda para los Trabajadores (INFONAVIT)	
Ms. Cristina González - Zertuche	Consejo Nacional de Vivienda (CONAVI)	
Ms. Julia Martínez	Institituto Nacional de Ecología (INE)	
Dr. David Morillón	Instituto de Ingeniería from UNAM	
Ms. Cristina Montenegro	UNEP Regional Office for Latin America and the Caribbean.	
Dr. Peter Graham	Sustainable Buildings & Climate Initiative UNEP – DTIE , Paris, & University of New South Wales, Australia	
Mr. Stephane Pouffary	ADEME, France	
Mr. Niclas Svenningsen	UNEP – Division of Technology, Industry & Economics	
Dr. Kaarin Taipale	Marrakech Task Force on Sustainable Buildings and Construction, Finland	

Note: The opinions expressed in this report are those of the author and do not necessarily reflect the opinions of those who were consulted or their organizations.

Editors:

- Peter Graham, United Nations Environment Programme Sustainable Buildings & Climate Initiative (UNEP-SBCI) & Faculty of the Built Environment, University of New South Wales, Australia
- Jenny Yamamoto, UNEP Consultant
- Chen Nan, Consultant to Centre Scientifique et Technique du Bâtiment CSTB, France

Design / Layout:

Thad Mermer, The Graphic Environment

1 About the Author: Odon De Buen was principle consultant for the Mexico section on the report "Green Building in North America" that was prepared for the Commission for Environmental Cooperation (2007); Adviser for the Association of Enterprises for Energy Efficiency in Buildings (AEAEE) (2004 to date); General Director of the National Commission for Energy Conservation (CONAE)

Table of Contents

Acknowledgements		
Table	e of Contents	3
1 Ke	y Outcomes: Summary for Decision-Makers	5
1.1 1.2 1.3 1.4 1.5 1.6	Process Estimated emissions A zero growth scenario Overall GHG reductions Cost of GHG reductions Recommendations	5 5 5 6 6
2 Co	ntext	9
2.1 2.2 2.3	Climate Population The services sector	9 10 12
3 Building Stock		15
3.1. 3.2	Households Commercial buildings	15 16
4 Energy Use		21
4.1. 4.2.	Residential sector. Commercial buildings	21 24
5 Baseline: The Building Sector's Contribution To National Greenhouse Emissions		29
5.1. 5.2. 5.3. 5.4.	Actual carbon-equivalent emission trends by sector Projected carbon-equivalent emission trends by sector Building Sector's Contribution to National Greenhouse Emissions Participation in Mexico's total CO ₂ eqv. emissions	29 29 31 35
6 Su	stainable Development Priorities and Priority Issues for the Building Sector	37
6.1 6.2 6.3.	General climate change policies and programs Policies and programs related to the buildings´ sector Other issues	37 37 40
7 Su	stainable Development Priorities and Priority Issues for the Building Sector	43
7.1. 7.2.	Residential buildings Commercial buildings	43 46
8 Conclusions and Recommendations		51
8.1. 8.2.	Conclusions Recommendations	51 53
Anne	ex 1: Methodology for estimating GHG emissions from buildings in México	57
1. 2.	Residential sector Commercial (non-residential) sector	57 59
Refe	rences	63

Chapter 1

Key Outcomes: Summary for Decision-Makers

Key Outcomes: Summary for Decision-Makers

This report represents the first comprehensive description of the factors that determine the present and future impacts of residential and commercial buildings in México on climate change.

1.1. PROCESS

The elaboration of the present document involved a process of information gathering on built space and energy use in Mexico's residential and commercial sectors. It also involved the development of a model to estimate greenhouse gas emissions of those sectors based on the available information.

It is important to note that there is a systematic lack of data on these matters in Mexico, particularly for the commercial sector but also on more specific issues (like energy end use information) for both sectors. To deal with this lack of data, many assumptions were made by the author, most of them based on other related data but sometimes on his personal judgment.

1.2. ESTIMATED EMISSIONS

The present exercise estimates residential and commercial buildings emissions of close to 75 MTon in 2006. This means that buildings represented about 12% of total present CO_2 eqv. emissions in Mexico in that year.

To have reference values for the year 2000, a simple backwards extrapolation was performed based of the 2006 to 2007 growth rate. A total of 70,250 KTon in GHG emissions was estimated. A potential growth to up to close to 500 MTon for 2050 has been estimated. Therefore there would be an increase of GHG emissions by a factor of 6.7 if nothing is done.

1.3. A ZERO GROWTH SCENARIO

All of the assumptions for the parameters considered in the model use for this report were made to reach a zero growth target, that is, that total emissions have a constant value over the 2006-2050 period. To reflect this, two important assumptions are made: (1) that the average intensity of electricity use in households in temperate climate does not grow and (2) that the average energy intensity for space cooling in households in hot climate also remains constant.

1.4. OVERALL GHG REDUCTIONS

In general, measures in the residential sector are reflected in the average end use intensities of five end uses (lighting, space cooling, refrigeration, "other electrical" and water heating). In the commercial sector, reductions are reflected by energy end use intensities by building type. In the residential sector, the proposed measures would reduce the growth of CO_2 eqv. emissions from the residential sector to 63% of the baseline in 2050. Most of the reductions come from measures related to electricity (96%) and, by end uses, the largest fraction of the reductions come from greater efficiency in "other electrical" uses (50%), space cooling (42%), refrigeration (3%) water heating (3%), and lighting (2%). In the commercial sector, technology improvements would result in reductions in the energy intensities

of space cooling, lighting and auxiliary equipment by 75%, and of 60% in energy intensity for water heating, and auxiliary motors.

1.5. COST OF GHG REDUCTIONS

In the residential sector, the estimated cost of the measures, at 2008 values, would be close to 103 billion US\$. In terms of unit costs per Ton of CO_2 eqv. avoided (under very general assumptions) the cheapest measure involves "other electrical" while water heating (which involves the use of solar energy) has the higher cost. In the commercial sector, the cost of the mitigation measures was estimated as a general percentage (3%) of the unit global construction costs of the buildings, so estimated cost is close to 21 billion US\$ by 2050.

1.6. RECOMMENDATIONS

Short-term

- Establish the building sector as a priority in mitigation policy. To date, there are no specific laws involving sustainable development priorities for buildings in Mexico. There are, though, a number of policies and programs involving both the government and the private sector that have direct and indirect impacts on the CO₂ eqv. emissions that result from residential and commercial buildings operations. These policies and programs have mixed results, and lack coordination and a steady effort. Making buildings a stated by the federal government priority (be it for energy efficiency in particular or for GHG mitigation in general) could help solidify the efforts.
- Reinforce the Instituto del Fondo Nacional de la Vivienda para los Trabajadores (INFONAVIT) Green Mortgage program and go ahead with Consejo Nacional de Vivienda (CONAVI) sustainable housing program. The Green Mortgage program by INFONAVIT and the use of subsidies by CONAVI to increase the sustainability aspects of new housing are key programs to reach a zero emissions growth in the residential sector.
- Increase the intensity and broaden the scope of Comisión federal de Electricidad (CFE) Demand Side Management (DSM) programs. CFE has been operating (directly or through the Fideicomiso para el Ahorro de Energía Eléctrica-FIDE) a number of successful DSM programs, mainly aimed at lighting and space cooling in the residential sector. These programs should recover their wide scale scope.
- Start a formal, integrated and coordinated effort of data gathering to have a better idea of the size and the energy use characteristics of commercial buildings. Recognize, in the government's data collection system, the importance of buildings as a specific category of energy use and integrate

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5 10453