

AGEDI THE ABU DHABI GLOBAL ENVIRONMENTAL DATA INITIATIVE

SOCIOECONOMIC SYSTEMS: DESALINATED WATER SUPPLY

مبادرة أبوظبي العالمية للبيانات البيئية. Abu Dhabi Global Environmental Data Initiative

Suggested Citation: AGEDI. 2016. Final Technical: Regional Desalination and Climate Change. LNRCCP. CCRG/IO

This report was prepared as an account of work sponsored by the Abu Dhabi Global Environmental Data Initiative (AGEDI). AGEDI neither makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, nor usefulness of the information provided. The views and opinions of authors expressed herein do not necessarily state or reflect those of the EAD or AGEDI.

Acknowledgments

Many individuals provided invaluable support, guidance, and input to the Regional Desalination and Climate Change project.

The authors would like to express their sincere and heartfelt expressions of gratitude for their review by providing comments, feedback and /or data towards the multiple deliverables within the project process including:

Mr. Abubaker Awad Salim Elhakeem, Dubai Municipality (DM) Ms. Ameena Ali, Researcher Dr. Asma Ali Abahussain, Arabian Gulf University (AGU) Ms. Ayesha Al Blooshi, Environment Agency Abu Dhabi (EAD) Mr. Hossam El Alkamy, Environment Agency Abu Dhabi (EAD) Dr. Fred Launay, Environment Agency Abu Dhabi (EAD) Dr. John Burt, New York University (NYU) Mr. Kevin Reid, Urban Planning Council (UPC) Ms. Manya Russo, Emirates Wildlife Society (EWS) - WWF Ms. Marina Antonopoulou, Emirates Wildlife Society (EWS) - WWF Dr. Mohamed Dawoud, Environment Agency Abu Dhabi (EAD) Ms. Nadia Rouchdy, Emirates Wildlife Society (EWS) - WWF Mr. Peter Fippenger, Environment Agency Abu Dhabi (EAD) Dr. Richard John Obrien Perry, Environment Agency Abu Dhabi (EAD) Dr. Robert Baldwin, Five Oceans Environmental Services LLC Dr. Rula Qalyoubi, UNEP-ROWA Dr. Simon Wilson, Five Oceans Environmental Services LLC Mr. Tanzeed Alam, Emirates Wildlife Society (EWS) - WWF Dr. Walid El Shorbagy, MWH Global Mr. Winston Cowie, Environment Agency Abu Dhabi (EAD)

We are additionally thankful the participation, time and effort that multiple stakeholders across the region who participated in the multitude of meetings and dialogue. The authors would like to especially thank the following stakeholders for their particularly involved participation: Environment Agency-Abu Dhabi team, Fariba Amirrad MottMacdonald, Geoff Toms Deltares, Mohammad Hajjiri ADWEC, Naoko Kubo MOCCAE, UAE Ministry of Energy team and Robin Morelissen Deltares.

About this Final Technical Report

In October 2013, the Abu Dhabi Global Environmental Data Initiative (AGEDI) launched the "Local, National, and Regional Climate Change (LNRCC) Programme to build upon, expand, and deepen understanding of vulnerability to the impacts of climate change as well as to identify practical adaptive responses at local (Abu Dhabi), national (UAE), and regional (Arabian Peninsula) levels. The design of the Programme was stakeholder-driven, incorporating the perspectives of over 100 local, national, and regional stakeholders in shaping 12 research sub-projects across 5 strategic themes.¹ The "Desalination and Climate Change" sub-project within this Programme aims to assess the vulnerability of the Arabian Gulf waters to climate change in the context of socioeconomic growth in the region.

The purpose of this "Final Technical Report" is to offer a summary of what has been learned in carrying out all research activities involved in the "Desalination & Climate Change" subproject. Ultimately, this report seeks to provide the reader with a comprehensive review of the methodological approach, analytical framework, data acquisition challenges, key assumptions, major findings, and other issues that can encourage future research regarding the strengthening of measures to protect Arabian Gulf waters.

The authors of this report are José Edson, Ilana Wainer, and Bruno Ferrero from the Oceanography Institute at the University of Sao Paulo in Brazil. The authors would like to acknowledge the contributions of Bill Dougherty from the Climate Change Research Group and Patrick Keys from Colorado State University who assisted with projection of future brine discharges into the Gulf

¹ For more information on the LNRCC programme and the desalination sub-project, please contact Jane Glavan (Inrclimatechange@ead.ae).

Table of Contents

<u>ABO</u>	UT THIS FINAL TECHNICAL REPORT ER	ROR! BOOKMARK NOT DEFINED.
<u>ACK</u>	NOWLEDGMENTS	<u>I</u>
<u>LIST</u>	OF FIGURES	<u>V</u>
<u>LIST</u>	OF TABLES	VIII
<u>LIST</u>	OF BOXES	VIII
<u>LIST</u>	OF ACRONYMS	IX
<u>SELE</u>	ECTED GLOSSARY	XI
<u>EXE(</u>	CUTIVE SUMMARY	XIII
<u>1.</u>]	BACKGROUND	1
1.1.	THE DESALINATION CONTEXT	1
	THE CLIMATE CHANGE CONTEXT	4
	KEY QUESTIONS AND OBJECTIVES	6
1.4.	METHODOLOGICAL APPROACH AND KEY ASSUMPTIONS	6
<u>2.</u>]	REGIONAL OCEAN MODELING FRAMEWORK	8
2.1.	BACKGROUND	9
	Spatial domain	10
	REPLICATION OF HISTORICAL OBSERVATIONS	10
	ROLE OF DESALINATION IN THE EARLIER REGIONAL OCEAN MOI	
 2.5. 2.6. 		EFFECTS ONLY 12 13
	SALINITY ANOMALIES UNDER CLIMATE CHANGE	15
<u>3.</u>]	DESALINATION PLANT SPATIAL REDUCTION	15
3.1.	BACKGROUND	16
3.2.	DESALINATION PLANT INVENTORY	16
3.3.	O PTIMAL NUMBER OF BRINE DISCHARGE POINTS	17
<u>4.</u>]	PROJECTED BRINE DISCHARGE MAGNITUDES	18
4.1.	BACKGROUND	18
4.2.	REGIONAL POPULATION GROWTH	18

4.3.	DESALINATED WATER PRODUCTION	19	
4.4.	SHIFTS TO MORE EFFICIENT DESALINATION TECHNOLOGIES	20	
4.5.	PROJECTED SALT LOADING TO THE ARABIAN GULF	20	
<u>5.</u> <u>C</u>	ONCEPTUAL APPROACH TO MODELING CLIMATE CHANGE & DESALINATION	21	
5.1.	BACKGROUND	22	
5.2.	METHODOLOGICAL STAGES	22	
5.3.	METRICS TO EVALUATE BRINE MODELING SIMULATIONS	23	
5.4.	TREATMENT OF FRESHWATER INFLOW	26	
5.5.	TREATMENT OF SEA LEVEL RISE	27	
<u>6.</u> <u>S</u>	ALINE RIVER MODELING RESULTS	28	
6.1.	BACKGROUND	28	
	MODEL WARM-UP PROCESS	29	
6.3.	MODEL RUN FRAMEWORK	30	
6.4.	MODELING HISTORICAL DESALINATION ACTIVITIES	31	
6.5.	POTENTIAL GULF-WIDE IMPACTS OF FUTURE DESALINATION ACTIVITIES	35	
6.5.1.	SALT TRANSPORT CHARACTERISTICS	39	
6.5.2.	TEMPERATURE AND SALINITY PROFILES	40	
6.5.3.	HORIZONTAL RESIDUAL CURRENT PATTERNS	42	
	VERTICAL MIXING PROCESSES BETWEEN ABU DHABI AND HORMUZ	43	
	SHATT AL-ARAB AND KUWAIT SALINE RIVER MIXING (WINTER SEASON)	44	
6.5.6.	THE ARABIAN GULF STATISTICAL CHANGES DUE TO DESALINATION	45	
<u>7.</u> <u>C</u>	ONCLUSIONS AND RECOMMENDATIONS	<u>47</u>	
7.1.	SCOPE, FRAMEWORK AND TRADEOFFS	48	
	SYNTHESIS OF RESULTS	52	
7.3.	Reflections on potential next steps	57	
<u>8.</u> L	IST OF REFERENCES	60	
ANNE	EX A: CHARACTERISTICS OF DESALINATION PLANTS USING THE ARABIAN GULF AS	<u>5 A</u>	
<u>FEED</u>	<u>STOCK, 2015 (GWI, 2015)</u>	<u>63</u>	
ANNE	EX B: KEY ASSUMPTIONS FOR PROJECTING BRINE DISCHARGES TO THE ARABIAN		
GULF	1	77	
ANNEX C: LIST OF CALCULATION COMPONENTS COMPRISING THE SALINE RIVER SALT			
TRAN	NSPORT ESTIMATE	82	
ANNF	EX D: ADDITIONAL DETAILS REGARDING SEA LEVEL RISE AND REGIONAL OCEAN		
	ELING OF THE ARABIAN GULF	83	
UUI		00	

List of Figures

page			
Figure ES-1: Spatial domain of the studyxiii			
Figure ES-2: Change in average bottom seawater temperature from layering Desalination Cases onto the Climate Change Only Case, 2040-2049xiv			
Figure ES-3: Change in average bottom seawater salinity from layering Desalination Cases onto the Climate Change Only Case, 2040-2049xv			
Figure 1-1: Arabian Gulf topography and bathymetry showing some wind patterns on the left map and ocean circulation on the right map (source: Edson et al, 2015)1			
Figure 1-2: Desalination plants in the countries bordering the Arabian Gulf (Lattemann & Höpner, 2008)			
Figure 2-1: Opening page of the LNRCCP Inspector toolkit9			
Figure 2-2: Arabian Gulf spatial domain showing bathymetry and area detail10			
Figure 2-3: Early 21 st century model validation. Sea surface temperature and salinity timeseries comparison, as internal legend (Edson et al, 2015)10			
Figure 2-4: TS diagrams for the Arabian Gulf based on the observed record (left) and modelled results (right) (Edson et al, 2015)11			
Figure 2-5: Earlier experimental results under RCP8.5 forcing for averaged SST (top), averaged SSS (middle) and averaged SSH (bottom) (Edson et al, 2015)13			
Figure 2-6: Arabian Gulf averaged timeseries (annually filtered) for SST (degrees C), SSS (practical salinity units, or psu) and dynamic SSH (meters). MPI-MR in black, ROM-AG results in blue (early), purple (mid), late (red) and linear trends in red. Detail (up left) expands the SSH trends. Detail map shows the coverage area (Edson et al, 2015)14			
Figure 2-7: Salinity vertical section (reference up right). Dashed lines show the fresher water inflow from Oman and Arabian Sea (Edson et al, 2015)15			
Figure 3-1: Summary desalination plant capacity, by technology, that use Arabian Gulf waters as a feedstock (GWI, 2015)			
Figure 3-2: Saline river zones distributed along the AG area based on a consolidation of desalination plant locations (left) and a summary table indicating shares by country of total national brine discharge (right)			
Figure 4-1: Population projections for the countries in the Arabian Peninsula (UN, 2015)19			
Figure 4-2: Projected desalinated water production20			
Figure 4-3: Saline river discharge in salt mass (tonnes; left figure) salt mass rate (kg/s; right figure) across all technologies, sal river location			

- Figure 5-1: Hydronamic sketch of the pre-processing "mechanism" that will provide an already hydrostatic and geostrophic balanced flow to the saline river outflow. To help ilustration, some symbols used are analogous to the electric circuits.......23
- Figure 5-3: The Shatt al-Arab basin, composed of the Tigris and Euphrates Rivers, and near the Arabian Gulf, the Karkhenh and Karun rivers (UNESCWA, 2013)27
- Figure 6-2: The "Southwest reference area" is the focus of the seven (7) experiments......30
- Figure 6-3: Time averaged salinity for the historical period (i.e., 2000-2005; no climate change) for the Early 21st (left) and Validation (right) runs, with surface salinity (top pair of maps) and bottom salinity (middle pair of maps). The bottom pair of maps illustrates the difference (or impact of desalination) for surface salinity (left) and bottom salinity (right).
- Figure 6-6: Salinity timeseries for the all the five 2040-2050 scenarios experiments. Averaged for two different areas coastal and southweast AG (i.e. see earlier Figure 6-2). The time series includes the warm-up period. The light blue line refers to the still running high saline experiment (ongoing). The magenta arrow points to the date (a summer condition) for which all the experiments have been climatologically reduced and analysed.
- Figure 6-7: Maps of bottom salinity corresponding to the summer of 2045. The black arrow points to experiments increasing in the saline river outflow, as text details on the right

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5 13571