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Mercury (Hg) is a pollutant of global importance that 
adversely affects human health and the environment. 
Environmental concentrations of mercury have 
increased three-fold globally due to human industrial 
activities, and the world’s freshwater ecosystems, 
estuaries and oceans are primary reservoirs where 
mercury is deposited and thereafter methylated.

People are commonly exposed to methylmercury 
through the consumption of fish, and some birds 
and marine mammals. However, there are gaps 
in our understanding about the relationship 
between anthropogenic releases of mercury and its 
subsequent bioaccumulation and biomagnification in 
freshwater and marine food webs, and how that may 
translate to exposure and risk at the local, regional, 
and global scale to fish, wildlife, and humans.

Monitoring mercury in biota (i.e., methylmercury 
availability) provides a pathway for understanding 
spatial gradients, temporal trends, and environmental 
magnitude of concern that cannot be ascertained in 
air, water, or sediment. Emphasizing upper trophic 
level biota for monitoring (i.e., trophic level 4 or 
higher) ultimately provides a confident ability to assess 
whether the global input of anthropogenic mercury 
into the environment is safe or harmful to fish, wildlife 
and humans. Because mercury methylation greatly 

varies according to many environmental factors, 
identifying ecosystem sensitivity spots is critical for 
attaining resource efficiencies (i.e., low cost, high 
reward information in a timely way). 

Our knowledge of mercury in biota is well known 
in the Northern Hemisphere as well as some 
ocean basins, however, large gaps remain in other 
geographic areas. To best track global and regional 
biotic mercury exposure over time and space, we 
need to synthesize existing information with new 
data in a structured and strategic way. Global models 
will be critical for understanding current needs and 
prioritizing future patterns.

The elements for a dual approach proposed  herein 
is to conduct biotic mercury monitoring across 
continents and oceans basins using representative 
bioindicators that can confidently provide information 
for decision makers to assess the effectiveness of the 
Minamata Convention on Mercury at both regional 
and global spatial levels at temporal scales of interest. 

Cost effective, standardized, and replicable 
monitoring of mercury in biota can be reliably 
conducted. Examples of existing networks and 
recent projects are given. This plan will provide the 
information needed for decision makers to protect 
human health and the environment. 

Executive Summary

There are multiple steps in developing a framework for monitoring mercury in 
biota in a comprehensive, standardized, and replicable way. Models and mercury 
exposure information are well described for many places of the world, but there 
are important data gaps that still need to be defined, prioritized and filled.

Three-step overarching framework 
for monitoring mercury in biota 
across continents and oceans.

Step 1
Map ecosystem 
sensitivity spots 
for methylmercury 
availability

Step 3
Select species and 
ecosystems to model 
and monitor globally

Step 2
Identify sensitive and 
at-risk trophic level 4 
or higher species
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Inorganic mercury enters ecosystems through the air 
(e.g., from coal-fired power plants and incinerators), 
water (e.g., from chlor-alkali facilities and artisanal 
small-scale gold mining), and land (e.g., from landfills 
and other contaminated sites; Kocman et al. 2017, 
Streets et al. 2017, Hsu-Kim et al. 2018, Martinez et 
al. 2018, Obrist et al. 2018, Mason et al 2019). Once 
in the environment, mercury can be converted to 
methylmercury by bacteria and other microbes 
(Gilmour et al. 2013, Yu et al. 2013). 

Methylmercury is toxic, and can accumulate in 
the tissues of fish, wildlife and humans, causing 
numerous negative health effects (Basu et al. 2018, 
Evers 2018, Buck et al. 2019). The extent to which 
mercury is methylated and made available in the 
environment is complex and can be influenced by 
many factors. 

Specific ecological conditions can facilitate the 
production and bioavailability of methylmercury. 
For example, bacteria often produce more 
methylmercury under moderate amounts of 
sulphate and low oxygen conditions (Gilmour et 
al. 1998, Hsu-Kim et al. 2013); these conditions 
are especially prevalent in wetland ecosystems 
(Branfireun et al. 1996). 

Furthermore, areas with certain types of dissolved 
organic carbon (DOC) from decaying terrestrial 
organic matter may generate and transport 

methylmercury more readily than areas that are low 
in DOC (Schartup et al. 2015). Freshwater ecosystems 
that are acidified due to deposition of sulfur oxides 
from sources such as fossil fuel combustion may 
be important environments that methylate more 
mercury that others (Branfireun et al. 1999, Driscoll et 
al. 2007, Wyn et al. 2009).

In areas where wet and/or dry mercury deposition 
is relatively low or moderate, effects on biota may 
be disproportionately high if conditions promote 
methylmercury production. Conversely, ecosystems 
with low methylation potential may have low levels of 
methylmercury despite heavy anthropogenic mercury 
contamination. 

The decoupling of inorganic mercury sources with 
methylmercury production and bioavailability is 
evident at local (Evers et al. 2007) and landscape 
levels (Eagles-Smith et al. 2016). 

The complexity of mercury cycling makes it 
challenging to predict exposure levels in upper 
trophic level fish and wildlife from environmental 
mercury concentrations alone (Gustin et al. 2016, 
Sunderland et al. 2016). Therefore, identifying 
appropriate bioindicators based on their relationship 
with sensitive ecosystems is a critical first step in 
assessing risk to ecological and human health 
in response to the responsibilities of monitoring 
mercury under the Minamata Convention (Figure 1).

Freshwater wetlands in 
Northern Hemisphere 

biomes are good examples 
of areas with higher 

mercury methylation, 
especially habitats with 

elevated dissolved organic 
carbon, low pH, and 

fluctuating water levels.

Introduction: Why is it important to monitor mercury 
in biota? 
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