

Assessment of Mercury Releases from the Russian Federation

Reduction of Atmospheric Mercury Releases from Arctic States

Russian Federal Service for Environmental, Technological and Atomic Supervision Danish Environmental Protection Agency Arctic Council Action Plan to Eliminate Pollution of the Arctic (ACAP) Reduction of Atmospheric Mercury Releases from Arctic States

Assessment of Mercury Releases from the Russian Federation

Prepared for the Arctic Council by:

Russian Federal Service for Environmental, Technological and Atomic Supervision Danish Environmental Protection Agency COWI A/S

Preface

The results of the Arctic Monitoring and Assessment Programme summarising decades of environmental research in the Arctic region stressed the fact that humans and the environment in the Arctic region currently experience alarming exposures to mercury, among a number of other toxic pollutants.

Within the framework of the Arctic Council, the eight Arctic Countries agreed on taking actions to contribute to the reduction of exposures to a number of priority pollutants, including mercury, in the Arctic region. The Arctic Council issued an action plan including 6 projects on priority pollutants. Denmark is the co-ordinator for the project on mercury.

The overall objective of the project is to contribute to a reduction of mercury releases from the Arctic countries; partly by contributing to the development of a common regional framework for an action plan or strategy for the reduction of mercury emissions, and partly by evaluating and selecting one or a few specific point sources for implementation of release reduction measures. In addition, the results of the project may be used to improve the inputs for modelling of long-range transport of mercury. A part of the project is accordingly to prepare a comprehensive list of major point sources of mercury emission to the atmosphere.

The present assessment of the releases of mercury from the Russian Federation has been prepared as part of the Arctic mercury project as a background document for the Russian reporting to a common regional mercury assessment. The regional assessment summarises information on mercury release from all eight countries in the region.

This study has been undertaken by a group of Russian Experts coordinated by COWI in cooperation with the Ministry of Natural Resources of the Russian Federation (until April 2004) and the Russian Federal Service for Environmental, Technological and Atomic Supervision (after April 2004). In the assessment official environmental data are combined with expert estimates to form a comprehensive view of the circulation of mercury through the Russian technosphere as well as releases of mercury from the territory of the Russian Federation. All estimates are the sole responsibility of the editors and authors and may be subject to change as more exact information is obtained.

Steering Group:

Mikala Klint (Denmark) - Chairman, Nikolai B. Nefediev (Russian Federation), Andrej Vl. Pechkurov (Russian Federation), Oxana Tsittser (Russian Federation), Marilyn Engle (USA), Douglas Steele (USA), Stanley Durkee (USA), Grace Howland (Canada), Sjur Andersen (Norway), Bente Sleire (Norway), Magnus Nyström (Finland), Mats Ekenger (Sweden), John Munthe (Sweden), Halldor Thorgeirsson (Iceland), Henrik Skov (Denmark), Gunnar Futsæter (ACAP Secretariat), Lars-Otto Reiersen (AMAP Secretariat), Simon Wilson (AMAP Secretariat), Garislav Shkolenok (UNEP Chemicals), Husamudin Ahmadzai (NEFCO).

Coordinator:

Danish Environmental Agency, Mikala Klint.

Ministry of Natural Resources of the Russian Federation (MNR RF) (until April 2004) :

Nikolai B. Nefediev, Department of Methodological Provision of State Ecological Control;

Andrej Vl. Pechkurov, Department of Ecological Safety;

Yury Y. Alexandrovsky, Department of International Co-operation on Environment Protection.

Russian Federal Service for Environmental, Technological and Atomic Supervision (after April 2004):

Oxana Tsittser, Department of Control and Supervision in Environmental Protection;

Andrej Vl. Pechkurov, Department of Control and Supervision in Environmental Protection;

Consultant:

COWI A/S (Denmark), Carsten Lassen (project manager, editor), Jakob Maag;

Moscow Representative Office of COWIconsult International Ltd., Tatyana V. Efimova (comanager, editor), Irina Chernakova.

Russian Experts (main authors):

Yuri A. Treger, Scientific Research Institute "Syntez", the Design Bureau of the Ministry of Science and Industry of RF

Eugeny P. Yanin, Institute of Geochemistry and Analytical Chemistry of V.I. Vernadskiy of RAS;

Boris A. Revich, Center for Demography and Human Ecology of Institute of Economic Forecasting of RAS;

Boris E. Shenfeld, Ural State Scientific Research Institute of Regional Ecological Problems of the Ministry of Natural Resources of RF;

Sergey V. Dutchak, Meteorological Synthesizing Centre East, EMEP MSC-E;

Nina A. Ozerova , Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry of RAS;

Tatyana G. Laperdina, Institute of Geochemistry and Analytical Chemistry of V.I. Vernadskiy of RAS;

Vladimir L. Kubasov, State Scientific Research Institute of Nonferrous Metallurgy "Gintsvetmet".

Russian Technical Experts:

Elena Yu. Bykhovskaya, Valentin I. Eberilj, Anna Z. Oschepkova, Y.G. Dvoskin, M.I. Chubirko, N.M. Pichuzhkina, V.A. Sinoda, L.F. Mikhailovaa, V.A. Kataeva, V.L. Kovalsky.

International Expert:

John Munthe, IVL Swedish Environmental Research Institute Ltd. in cooperation with VTI, The All Russia Thermal Engineering Institute (project funded by USA).

Reviewers:

International reviewers: Mark Richardson (Canada), Leonard Surges (Canada), Jozef M. Pacyna (Norway), Edward M. Weiler (USA), Velu Senthil (USA), Frank Anscomb (USA), Alexander McBride (USA), David Kirchgessner (USA), Mr. John Kinsey (USA), Mr. Russell Bullock (USA), Alexis Cain (USA), Stephen Hoffman (USA), Robert Stevens (USA), Richard Meyer (USA), Alan Kolker (USA), John DeYoung (USA), William Brooks (USA), Richard Levine (USA), Thomas Goonan (USA), Dennis Kostick (USA), Richard Artz (USA), Mark Cohen (USA), James Ekmann (USA), Melissa Chan (USA).

Financial support:

This study is financially supported by Denmark, Canada, USA and Norway.

Acknowledgement:

Special thanks are due to a large number of Russian enterprises who have contributed to this assessment by providing information on technologies and mercury releases.

Symbols, Units and Acronyms

ACAP	Arctic Council Action Plan to Eliminate Pollution of the Arctic
AMAP	Arctic Monitoring and Assessment Programme
ESP	Electrostatic precipitator
GOST	State standards
Hg	Chemical symbol for mercury
INTAS	International Association for the Promotion of Co-operation with Scientists from the New Independent States of the Former Soviet Union
JSC	Joint Stock Company
MAC	Maximum allowed concentration
MAD	Maximum allowed dose
MCW	Mercury containing waste
MSW	Municipal solid waste
OSPAR	The Convention for the Protection of the Marine Environment of the North-East Atlantic
PVC	Poly vinyl chloride
RAS	Russian Academy of Sciences
RF	Russian Federation
USSR	Union of Soviet Socialist Republics
VCM	Vinyl chloride monomer
WWS	Waste water sludge

Units

μg	10 ⁻⁶ g
ppm	parts per million
Punctuation	In accordance with English punctuation, dot (.) is used as decimal symbol and comma (,) as digit grouping symbol
t	1000 kg = metric tons
Tonne(s)	1000 kg = metric tons = t

Table of Contents

Execu	Executive Summary		
1	Introd	uction	16
1.1			
1.2		ation of Mercury Releases	17
1.3	Metho	dology of the Assessment	21
1.4		ry Chemistry	23
1.5	Conce	ptual Model for Mercury Cycling	26
2	Produ	ction, Import and Export	27
2.1	Produc	ction of Mercury in the Russian Federation	27
	2.1.1	Historical View	27
	2.1.2	Extraction and Primary Production of Mercury in the USSR and Russia	27
	2.1.3	Recycling of Mercury	31
2.2	Export	and Import of Mercury	33
2.3	•	stic Mercury Market in Russia	34
3	Intent	ional use of Mercury	36
3.1	Chlor-a	alkali Production	36
	3.1.1	Description of Production Process and Mercury Usage	37
	3.1.2	Pathways of Mercury Loss from Production Processes	39
	3.1.3	Methods of Mercury Removal from Products, Discharges, Waste and Off-gases	41
	3.1.4	Production of Chlor-alkali and Mercury Loss at Operating Enterprises	42
	3.1.5	Waste Dumps and the Environment around Shut-Down Enterprises	63
	3.1.6	Summary	65
3.2	Other u	uses of Mercury in the Chemical Industry	69
	3.2.1	Production of Vinyl Chloride Monomer (VCM)	69
	3.2.2	Former Production of Vitamin B-2	71
	3.2.3	Former Production of Pigments	72
3.3	Gold N	Iining Using the Amalgamation Technology	73
	3.3.1	History of Gold Mining in the Russian Federation	73
	3.3.2	Gold Production from Gold-mining Wastes	76
	3.3.3	Gold Mining with Mercury Amalgamation	77
	3.3.4	The Current Situation	81
	3.3.5	Mercury Contamination of Gold-mining Areas of Russia	86
3.4	Dental	Amalgam Fillings	86
	3.4.1	Use of Mercury for Dental Amalgams	86
	3.4.2	Mercury Releases from Fillings	87
3.5	Therm	ometers	88
	3.5.1	Production of Mercury Thermometers	88

	3.5.2	Mercury consumption with thermometers	91
	3.5.3	Use, Export and Import of Mercury Thermometers	94
	3.5.4	Emission of Mercury When Using Thermometers	95
3.6	Barome	eters, Manometers and Other Measuring Equipment	95
	3.6.1	Production of Mercury-containing Measuring Equipment	95
	3.6.2	Mercury Consumption with Measuring Equipment	96
	3.6.3	Mercury in Waste Products and Releases of to Air, Soil and Water	97
3.7	Electro	chemical Cells	97
	3.7.1	Production of Mercury-containing Electrochemical Cells	97
	3.7.2	Export and Import of Electrochemical Cells	101
	3.7.3	Use and Disposal of Electrochemical Cells	102
3.8	Light So	ources	103
	3.8.1	Production of Mercury-containing Light Sources	104
	3.8.2	Russian Market of Mercury Lamps	123
3.9	Switche	es and Other Electrical Equipment	128
3.10	Federat		130
		Production of Mercury Chemicals	130
	3.10.2		132
3.11		y-Containing Pesticides	134
		Production.	135
	3.11.2	6 6	135
		Application of Mercury-containing pesticides	136
	3.11.4		137
	3.11.5	Mercury containing pesticides burial sites	140
	3.11.6	Summary	141
3.12		pplications	142
	3.12.1	Production of Lithium Isotopes	142
		Production of Semiconductors	145
		Power Semiconductor Devices	147
		Mercury Containing Biocides	147
	3.12.5	Other Uses	148
4	Mobilis	sation of Mercury Impurities	150
4.1	Coal		150
	4.1.1	Mercury in Coal from the Russian Federation	150
	4.1.2	Releases of Mercury to the Environment and Wastes by Coal Mining	156
	4.1.3	Use of Coal for Power and Heat Production	157
	4.1.4	Production of Coke	162
	4.1.5	Summary	167
4.2	Oil, Nat	ural Gas, Oil Shale and Biofuel	167
	4.2.1	Introduction	167
	4.2.2	Mercury in Oil and Gas Raw Materials	171
	4.2.3	Mercury Mobilisation with Oil	176

	4.2.4	Fate of Mercury by Natural Gas Processing	178
	4.2.5	Mercury Mobilisation with Natural Gas and Gas Condensate	184
	4.2.6	Oil shale	184
	4.2.7	Wood	185
	4.2.8	Peat	185
4.3	Cemer	nt and lime	186
4.4	Non-fe	rrous Metallurgy	191
	4.4.1	Mercury in Non-Ferrous Metal Ores and Concentrates	192
	4.4.2	Primary Production of Zinc	196
	4.4.3	Production of Primary Nickel	205
	4.4.4	Production of Copper	211
	4.4.5	Copper and Nickel Production at MMC Norilsk Nickel OJSC	223
	4.4.6	Production of Tin	231
	4.4.7	Production of Lead	233
	4.4.8	Production of Other Non-ferrous Metals	236
	4.4.9	Summary	238
4.5	Ferrous	s Metallurgy	239
5	Turno	ver of Mercury by Waste Treatment	244
5.1	Mercur	ry Recycling	244
	5.1.1	Mercury-containing waste	244
	5.1.2	Scientific and Production Enterprise Kubantsvetmet CJSC	245
	5.1.3	Merkom Ltd.	264
5.2	Mercur	ry Turnover with Solid Waste	269
	5.2.1	Generation of Mercury-containing Solid Waste in Russia	269
	5.2.2	Mercury in Industrial Waste and Waste from Energy Production	272
	5.2.3	Mercury in Municipal Solid Waste	273
	5.2.4	Mercury in Medical Waste	276
5.3	Mercur	ry in Waste Water	276
6	Summ	ary and Discussion	281
6.1	Use an	d Mobilisation of Mercury in the Russian Federation	281
6.2	Releas	es of Mercury from the Russian Federation	284
		avia Calid Maata	000

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_15609