GUIDELINES FOR ENVIRONMENTALLY SOUND MANAGEMENT OF PCBS IN THE MEDITERRANEAN

Strategic Partnership for the Mediterranean Sea Large Marine Ecosystem
MedPartnership

Together for the Mediterranean Sea

GUIDELINES FOR ENVIRONMENTALLY SOUND MANAGEMENT OF PCBs IN THE MEDITERRANEAN

Environmentally Sound Management of PCBs in the Mediterranean

These Guidelines have been commissioned by the marine pollution assessment and control unit (MED POL) of the Mediterranean Action Plan (UNEP/MAP) to the Regional Activity Centre for Sustainable Consumption and Production (SCP/RAC) under the MedPartnership Project.

Supervision: SCP/RAC

Technical contents: PM&E sustainability consulting: www.pmecon.com and INESCOP: www.inescop.es

Legal notice

The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP/MAP Coordinating Unit concerning the legal status of any State, Territory, city or area, or if its authorities, or concerning the delimitation of their frontiers or boundaries.

ISBN: 978-92-807-3521-5

Copyright

This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP/MAP Coordinating Unit would appreciate receiving a copy of any publication that uses this publication as a source. This publication cannot be used for resale or for any other commercial purpose whatsoever without permission in writing for UNEP/MAP Coordinating Unit.

PREFACE

This technical guide is focused on different aspects of PCB life cycle environmentally sound management (ESM), including inventory and monitoring until their final phasing out and disposal and its final objective is to provide the Mediterranean countries with information in order to establish a proper management system to prevent human health and environmental hazard.

It has been developed by UNEP/ MAP MED POL Programme under the MedPartnership project¹ and in the framework of MAP Programme of Work 2014-2015.

Polychlorinated Biphenyls (PCBs) are among the Persistent Organic Pollutants (POPs) identified by the international community for immediate international action, along with the pesticide DDT, highly toxic Dioxins and Furans (unintentionally formed by-products as a result of incomplete combustion or chemical reactions) and other substances. The Stockholm Convention on Persistent Organic Pollutants (POPs) aims for the worldwide elimination of these substances.

PCBs have serious health and environmental effects, which can include carcinogenicity, reproductive impairment, immune system changes, and effects on wildlife causing a loss of biological diversity. The existing PCBs and all equipment contaminated with PCBs have to be eliminated in an environmentally sound manner without producing hazards for humans or the environment by 2028. Other global and regional conventions regulate the management of dangerous chemicals and hazardous wastes addressing PCB such as the Basel Convention, as well as the Rotterdam Convention. In addition the Barcelona Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean and its related Protocols (Land-based Sources and Activities Protocol, and the Hazardous Waste Protocol) also addresses the PCB phase out and disposal.

This technical guide provides background information on data collection, identification, sampling and monitoring of PCB containing equipment and describes PCB management of closed applications. It also explains maintenance of equipment containing PCB focusing on safety, emergency actions as well as phase out, packing and temporary storage. Finally it refers to international and national regulations for the transport of hazardous goods, as well as pretreatment, treatment and disposal of PCBs.

The guide was reviewed and agreed at a Regional Expert meeting, with experts nominated by the Contracting Parties, which was held from 7-9 April 2015 in Istanbul, Turkey and approved as appropriate by the MED POL focal point meeting. It is published online in English and French to serve as a technical guidance for the Mediterranean countries in implementing the relevant priority actions of the National Action Plans adopted in the framework of Article 5 and 15 of the LBS Protocol of the Barcelona Convention and its Strategic Action Programme SAP-MED.

The Strategic Partnership for the Mediterranean Sea Large Marine Ecosystem (MedPartnership) is a collective effort
of leading organizations (regional, international, nongovernmental, etc.) and countries sharing the Mediterranean Sea
towards the protection of the marine and coastal environment of the Mediterranean. The MedPartnership is being led
by United Nations Environment Programme (UNEP) Mediterranean Action Plan (MAP) and the World Bank and is
financially supported by the Global Environment Facility (GEF), and other donors, including the European Union (EU)
and all participating countries.

Environmentally Sound Management of PCBs in the Mediterranean

TABLE OF CONTENTS

•	INTRODUCTION	13
	1.1 Polychlorinated Biphenyls (PCBs)	13
	1.2 Basel Convention	14
	1.3 Stockholm Convention	14
	1.4 Rotterdam Convention (PIC Convention)	16
	1.5 UNEP/MAP-Barcelona Convention and its Protocols	17
•	DATA COLLECTION, IDENTIFICATION, SAMPLING AND MONITORING	18
	2.1 Data collection and Inventory	18
	2.2 PCB Applications	21
	2.2 Periodic Examinations and Maintenance of PCB	
	Containing Devices	22
	2.3 Screening Test Kits and Laboratory Analysis	38
	2.4 Database	45
	2.5 Labelling of Checked Equipment	46
	2.6 Site Monitoring	49
•	PCB Management of Closed Applications	52
	3.1 PCB Management Plan	52
	3.2 Spill Prevention, Control and Countermeasure Plan (SPCC Plan)	53
	3.3 Priorities for Disposal and Site Decontamination	55
•	Maintenance of Equipment Containing PCB	56
	4.1 Maintenance of In-Service PCB Equipment	56
	4.2 Best Working Practices	58
	4.3 Inspection of PCB Containing Transformers	59
	4.4 Evaluation of PCB Containing Capacitors	61
	4 5 Substitute Fluids	62

• Safety	64
5.1 Safety and Personal Protective Equipment	64
Freezenses Astions and Clean Un	69
Emergency Actions and Clean Up	
6.1 Emergency Actions for Cold Incidents	70
6.2 Emergency Actions for Hot Incidents	71
6.3 First Aid in Case of Contact with PCB	74
6.4 Clean Up after Incidents	74
6.5 Check of Clean Up (Monitoring)	77
Phase Out	79
7.1 Phase Out of Transformers	79
7.2 Phase Out of Capacitors	81
Packing	83
8.1 Packing According to ADR	83
8.2 Summary of Possible Containers for PCB Transports	85
8.3 Handling of Packed Waste	93
Temporary Storage	95
9.1 Temporary Storage - On Site	95
9.2 Central Storage Platform	98
9.3 Authorization and Control	104

•	Transport	105
	10.1 International Regulations for the Transport	
	of Hazardous Goods	105
	10.2 Obligations of Main Actors	105
	10.3 National Transports	107
	10.4 Transboundary Movement of Hazardous Waste	107
	10.5 Loading and Safety Check before Transport Takes Place	108
	10.6 Waste Transportation by Air	111
•	Pre-treatment, Treatment and Disposal	112
	11.1 Technologies and Methods in General	113
•	Annexes	117
	12.1 In-Depth Information on the Internet:	
	Conventions and Guidance Documents	117
	12.2 Detection Kits and Other Instruments	119
	12.3 PCB Pre-Treatment Technologies (Extract only)	120
	12.4 PCB Non-Combustion Technologies	121
	12.5 PCB Combustion Technologies	125
	12.6 PCB Emerging Technologies	126
	12.7 PCB Treatment and PCB Disposal Companies	126
	12.8 Emergency Response Plan for Cold Incidents	126
	12.9 Emergency Response Plan for Hot Incidents	128
	12.10 Best Working Practices	130
	12.11 PCB Instructions for Workers	130
	12.12 First Aid in Case of Contact with PCBs	132
	12.13 Guidelines for the Inspection of Sites and the Sampling of	
	Transformers and Capacitors (two persons)	132
	12.14 Draft Inventory Questionnaires	133
	12.15.Example of a Possible Register	139
	12.16 PCB Equipment Monthly Maintenance Plan	141
	12.17 PCB Interim Storage Facility Monthly Inspection Report	142
	12.18 Transboundary Movement and Notification Documents	
	for Hazardous Waste	143
	12.19 Dangerous Good Declaration and Container Packing	
	Certificate	144
	12.20.Application Form for Membership in the PEN	145

Abbreviations and Definition of Terms

AC	Alternating Current	
ADR	European agreement on the	
	international road transport for	
	hazardous goods	
Askarel	Trade name of PCB cooling fluid	
	(USA, Monsanto)	Ca
BAT	Best Available Technique	
ВС	Basel Convention on the trans-	
	boundary movement of hazardous	
	wastes and their disposal	
BCD	Base catalysed decomposition	
BEP	Best Environmental Practice	
BRS	Basel, Rotterdam, Stockholm	
	Convention (Secretariat)	
CaO	Calcium oxide	
Capacitor	Equipment or unit to supply	СН
	lagging kilovars for power factor	Clo
	correction of an electric system;	
	some capacitors were	
	manufactured with PCB as	
	cooling fluid	
Capacito	or Bank (General)	
	Practically there are three	Co
	different ways of power factor (PF)	
	correction:	
	Capacitors for «individual» PF-	
	correction; the capacitor is directly	
	connected to the	
	terminals of an equipment	
	(motors, welding machine etc.)	Co
	producing the «lagging kilovars»	

Capacitor Bank (LV)

Capacitors for «group» PFcorrection; the capacitor(s) is (are) connected to the LV-busbar of a transformer station, which feeds a number of consumers with individual motors, welding machines etc.

Capacitor Bank (MV)

Capacitors for «central» PFcorrection; Large capacitor installation connected to the Middle- or High Voltage busbars of a substation where many individual electrical appliances (motors etc.) of various size operate at different times and periods.

HD Catalytic hydrodechlorination losed Systems

Capacitors and transformers, where the PCB itself is in completely closed containers; PCBs rarely emit from closed systems (in good condition) ongener Depending on the number and position of the chlorine atoms in the Biphenyl molecule, 209 isomers and homologue Chlorine Biphenyls are theoretically possible. A single compound from this group is called PCB congener.

> Internationally used expression for Transport or Storage Containers

with the Standard size of 2 x 2 x6 meters (40' Container – 2 x 2 x 12 meters)

Container Box

There are various types of 20' and 40' Containers available, the most common is the Box Container with a front door, from an open top Container the roof can be removed for loading and offloading activities (e.g. ideal for transformers) **Cooling Fluid** Dielectric fluid COP Conference of the Parties DC Direct Current DDT Dichlorodiphenyltrichloroethane DE Destruction efficiency DRE Destruction and removal efficiency Exempli gratia / for example e.g. **Environmentally Sound ESM** Management ETI **Environmental Technology** International Ltd. / Switzerland EU **European Union** FAO Food and Agriculture Organization of the United Nations GC Gas chromatography; Procedure for the determination of evaporating substances GEF The Global Environment Facility (GEF) is an international financial entity with 177 countries as members GHS Globally harmonized system of classification and labelling of

	chemicals		
GPCR	Gas-phase chemical reduction		
GTO	Gate turn-off thyristor		
HV	High voltage		
IATA DGF	RIATA regulations on the transport		
	of dangerous goods / transport		
	by air		
IBC	Intermediate Bulk Container		
ID (num	ber)		
	Identification (number)		
IGBT	Insulated-gate bipolar transistor		
IMDG	International maritime dangerous		
	goods code / transport by sea		
ISO	International Organization for		
	Standardization		
kV	Kilovolts		
kVA	Kilovolt ampere		
kVAR	Kilovolt ampere reactive		
kW	Kilowatt		
LBS	Land based sources and activities		
	Protocol		
LV	Low voltage (230/400 V)		
MAP ME	DPOL		
	Programme for the Assessment		
	and Control of Marine Pollution in		
	the Mediterranean		
μg	Microgram		
mg/kg	Milligram per kilogram		
MS	Mass spectrometry		
MV	Medium voltage (Normally in the		
	range between 11 and 66kV)		
MVA	Megavolt ampere		
ng	Nanogram (1000 ng = 1 µg)		
NGO	Non-governmental organization		
Open Systems			

	Applications where PCB is		PCE
	consumed during its use or not	RC	Roti
	disposed of properly after its use		Pric
	or after the use of the products		(PIC
	that contain PCB;		che
	Open systems emit PCB directly		inte
	in the environment (e.g. softeners	RID	Reg
	in PVC, neoprene and other		trar
	rubbers containing chloride)		trar
PBB	Polybrominated Biphenyls	SAP-MEI	D Stra
РСВ	Polychlorinated Biphenyls		add
PCDD	Dibenzo-p-dioxins or dioxin;		acti
	Highly toxic by-product of PCB		Reg
PCDF	Dibenzofurans or furan; Highly	SBC	Sec
	toxic by-product of PCB	SC	Sto
РСТ	Polychlorinated Triphenyls		Org
PE	Polyethylene	SCWO	Sup
PE-HD	High-density polyethylene		Sec
PE-LD	Low-density polyethylene		orig
PEN	PCB Elimination Network of UNEP		con
	Chemicals		fror
Persisten	${f t}$ Very slightly degradable in the		emi
	environment		or u
PIC	Prior Informed Consent		hos
POP	Persistent Organic Pollutants		emi
PPE	Personal Protective Equipment	SNV	Swi
ppb	Parts per billion		Star
ppm	Parts per million (mg/kg)	SPCC	Spil
Primary	source		Cou
	A product to which PCB was	TDI	Tole
	added voluntarily to influence	TEQ	Тохі
	the product's characteristics (e.g.	Transfor	mer
	cooling fluids for transformers like		Equ
	Sovol, Sovtol, Askarel, Pyralene,		red

Clophen, etc.); Such products emit

B continuously tterdam Convention on the or Informed Consent Procedure C) for certain hazardous emicals and pesticides in ernational trade gulation for the international nsport of hazardous goods / nsport by rail rategic Action Programme to dress pollution from land-based tivities in the Mediterranean gion cretariat of Basel Convention ckholm Convention Persistent ganic Pollutants (POPs) percritical water oxidation condary source A product that ginally was free of PCB, but later ntaminated by PCB emitting m primary sources (e.g. by nission from primary sources use of contaminated pumps, ses, etc.) Such products also nit PCB iss Association for indardization

- ill Prevention, Control and untermeasure
- erable daily intake
- kic equivalency factor

uipment used to increase or reduce voltage; PCB containing transformers are usually installed in sites or buildings where electricity is distributed.

TTCB Tri-tetrachlorobenzenes

UN-approved

Equipment that fulfils the specific United Nations testing procedures

- UNDP United Nations Development Programme
- UNEP United Nations Environment Programme
- UNIDO United Nations Industrial Development Organization
- UNITAR United Nations Institute for Training and Research
- US EPA United States Environmental Protection Agency
- WHO World Health Organisation

INTRODUCTION

1.1. Polychlorinated Biphenyls (PCBs)

Persistent Organic Pollutants (POPs) have been identified by the international community for immediate international action by means of the Stockholm Convention. The pesticide DDT, highly toxic Dioxins and Furans (unintentionally formed by-products as a result of incomplete combustion or chemical reactions) as well as PCBs count among the POPs.

PCBs have serious health and environmental effects, which can include carcinogenicity, reproductive impairment, immune system changes, and effects on wildlife causing a loss of bio¬logical diversity (Carpenter 2006, Hotchkiss et al. 2008, Wirgin et al. 2011). PCBs bio-accumulate in the fatty tissue of humans and other living organisms. The chemical is transported over long distances to regions where it has never been used or produced before. This process of evaporation, movement with the air streams, condensation and deposition on the ground is known as the "grasshopper effect".

PCB production started in 1929. PCBs were manufactured by a number of companies in many industrialised countries, and maximum production was reached in the late 1960s. After 1983 production was stopped in most countries, except for some Eastern European countries and Russia, where manufacture ceased between 1987 and 1993.

PCBs were mostly used in closed applications for example as cooling and isolating agents in transformers and capacitors, in heat transfer systems and hydraulic systems, in particular in mining equipment. PCBs mixtures were, however, also widely used in open and partially open applications, for example in caulks/sealants, paints, anti-corrosion coatings, surface coatings, cables and cable sheaths, small capacitors, etc.

From the technical point of view, the characteristics of PCBs were quite advantageous, thus they found a wide range of applications as mentioned above.

The Stockholm Convention on Persistent Organic Pollutants (POPs) counts PCBs among the substances targeted for worldwide elimination. The existing PCBs and all equipment contaminated with PCBs have to be eliminated in an environmentally sound manner without producing hazards for humans or the environment by 2028. PCB treatment or disposal technology must comply with the highest safety and environmental standards and must be capable of reducing the PCB contamination level of those pieces of equipment suitable for re-classification below the legally permitted level of 50 ppm as well as assure