

The Emissions Gap Report 2013

A UNEP Synthesis Report

Published by the United Nations Environment Programme (UNEP), November 2013

Copyright © UNEP 2013

ISBN: 978-92-807-3353-2 DEW/1742/NA

This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source.

No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P. O. Box 30552, Nairobi 00100, Kenya.

Disclaimers

Mention of a commercial company or product in this document does not imply endorsement by UNEP or the authors. The use of information from this document for publicity or advertising is not permitted. Trademark names and symbols are used in an editorial fashion with no intention on infringement of trademark or copyright laws.

We regret any errors or omissions that may have been unwittingly made.

© Images and illustrations as specified.

Citation

This document may be cited as: UNEP 2013. The Emissions Gap Report 2013. United Nations Environment Programme (UNEP), Nairobi

A digital copy of this report along with supporting appendices are available at http://www.unep.org/emissionsgapreport2013/

This project is part of the International Climate Initiative. The Federal Ministry for the Environment, Nature Conservation and Nuclear Safely supports this initiative on the basis of a decision adopted by the German Bundestag. Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Based on a decision of the Parliament of the Federal Republic of Germany

UNEP promotes environmentally sound practices globally and in its own activities. This report is printed on paper from sustainable forests including recycled fibre. The paper is chlorine free, and the inks vegetable-based. Our distribution policy aims to reduce UNEP's carbon footprint

The Emissions Gap Report 2013 A UNEP Synthesis Report

November 2013

Acknowledgements

Scientific Steering Committee

Joseph Alcamo, Chair (UNEP, Kenya); Bert Metz (European Climate Foundation, Netherlands); Mónica Araya (Nivela, Costa Rica); Tomasz Chruszczow (Ministry of Environment, Poland); Simon Maxwell (Overseas Development Institute, United Kingdom); Klaus Müschen (Federal Environment Agency, Germany); Katia Simeonova (UNFCCC Secretariat, Germany); Youba Sokona (South Centre, Switzerland); Merlyn Van Voore (UNEP, France); Ji Zou (National Center for Climate Change Strategy and International Cooperation, China).

Chapter 2

Lead authors: Michel den Elzen (PBL Netherlands Environmental Assessment Agency, Netherlands), Taryn Fransen (World Resources Institute, USA), Hans-Holger Rogner (International Institute for Applied Systems Analysis, Austria).

Contributing authors: Giacomo Grassi (European Commission's Joint Research Centre, Italy), Johannes Gütschow (Potsdam Institute for Climate Impact Research. Germany), Niklas Höhne (Ecofys, Germany), Kelly Levin (World Resources Institute, USA), Mark Roelfsema (PBL Netherlands **Environmental** Assessment Agency, Netherlands), Elizabeth Sawin (Climate Interactive, USA), Christopher Taylor (Department of Energy and Climate Change, United Kingdom), Zhao Xiusheng (Tshingua University, China).

Reviewers: Joshua Busby (University of Texas at Austin, USA), Joanna House (Bristol University, United Kingdom), Ariane Labat (European Commission, Belgium), Gunnar Luderer (Potsdam Institute for Climate Impact Research, Germany), Bert Metz (European Climate Foundation, Netherlands), Klaus Müschen (Federal Environment Agency, Germany), Daniel Puig (UNEP Risø Centre, Denmark), Roberto Schaeffer (Federal University of Rio de Janeiro, Brazil), Katia Simeonova (UNFCCC Secretariat, Germany).

Other input: Jusen Asuka (Institute for Global Environmental Studies, Japan), Priya Barua (World Resources Institute, USA), Jenna Blumenthal (World Resources Institute, USA), Casey Cronin (Climate Works Foundation, USA), Hannah Förster (Öko Institut, Germany), Andries Hof (PBL Netherlands Environmental Assessment Agency, Netherlands), Olivia Kember (The Climate Institute, Australia), Kevin Kennedy (World Resources Institute, USA), Alexey Kokorin (World Wildlife Foundation, Russian Federation), Takeshi Kuramochi (Institute for Global Environmental Studies, Japan), Apurba Mitra (World Resources Institute, USA), Smita Nakhooda (Overseas Development Institute, United Kingdom), Gabriela Niño (Mexican Centre for Environmental Law, Mexico), Michael Obeiter (World Resources Institute, USA), Jos Olivier (PBL Netherlands Environmental Assessment Agency, Netherlands), Leticia Pineda (Mexican Centre for Environmental Law, Mexico), Viviane Romeiro (University of São Paulo, Brazil), Kath Rowley (Climate Change Authority, Australia), Ranping Song (World Resources Institute, China), Carlos Tornel (Mexican Centre for Environmental Law, Mexico).

Chapter 3

Lead authors: Gunnar Luderer (Potsdam Institute for Climate Impact Research, Germany), Joeri Rogelj (ETH Zurich, Switzerland), Roberto Schaeffer (Federal University of Rio de Janeiro, Brazil).

Contributing authors: Rob Dellink (OECD, France), Tatsuya Hanaoka (National Institute for Environmental Studies, Japan), Kejun Jiang (Energy Research Institute, China), Jason Lowe (MetOffice, United Kingdom), Michiel Schaeffer (Climate Analytics, USA), Keywan Riahi (International Institute for Applied Systems Analysis, Austria), Fu Sha (National Center for Climate Change Strategy and International Cooperation, China), Detlef P. van Vuuren (PBL Netherlands Environmental Assessment Agency, Netherlands).

Reviewers: Michel den Elzen (PBL Netherlands Environmental Assessment Agency, Netherlands), Bert Metz (European Climate Foundation, Netherlands), Klaus Müschen (Federal Environment Agency, Germany), Daniel Puig (UNEP Risø Centre, Denmark), Massimo Tavoni (Fondazione Eni Enrico Mattei, Italy), Christopher Taylor (Department of Energy and Climate Change, United Kingdom).

Other input: Peter Kolp (International Institute for Applied Systems Analysis, Austria).

Chapter 4

Lead authors: Henry Neufeldt (World Agroforestry Centre - ICRAF, Kenya).

Contributing authors: Tapan K. Adhya (KIIT University, India), Jeanne Y. Coulibaly (AfricaRice, Benin), Gabrielle Kissinger (Lexeme Consulting, Canada), Genxing Pan (Nanjing Agricultural University, China).

Reviewers: Anette Engelund Friis (Danish Agriculture and Food Council, Denmark), Bert Metz (European Climate Foundation, Netherlands), William Moomaw (Tufts University, USA), Klaus Müschen (Federal Environment Agency, Germany), Christine Negra (EcoAgriculture Partners, USA), Anne Olhoff (UNEP Risø Centre, Denmark), Katia Simeonova (UNFCCC Secretariat, Germany), Youba Sokona (South Centre, Switzerland).

Chapter 5

Lead authors: Niklas Höhne (Ecofys, Germany), Jennifer Morgan (World Resources Institute, USA).

Contributing authors: Yemi Katerere (Independent Consultant, Zimbabwe), Lutz Weischer (World Resources Institute, Germany), Durwood Zaelke (Institute for Governance and Sustainable Development, USA).

Reviewers: Michel den Elzen (PBL Netherlands Environmental Assessment Agency, Netherlands), Johannes Gütschow (Potsdam Institute for Climate Impact Research, Germany), Ariane Labat (European Commission, Belgium), Kelly Levin (World Resources Institute, USA), Bert Metz (European Climate Foundation, Netherlands), Daniel Puig (UNEP Risø Centre, Denmark), Christopher Taylor (Department of Energy and Climate Change, United Kingdom).

Chapter 6

Lead authors: Niklas Höhne (Ecofys, Germany), Anne Olhoff (UNEP Risø Centre, Denmark).

Contributing authors: Kornelis Blok (Ecofys, Netherlands), Taryn Fransen (World Resources Institute, USA).

Reviewers: Joshua Busby (University of Texas at Austin, USA), Annie Dufey (Fundación Chile, Chile), Asger Garnak (Ministry of Climate, Energy and Buildings, Denmark), Bert Metz (European Climate Foundation, Netherlands), Klaus Müschen (Federal Environment Agency, Germany), Daniel Puig (UNEP Risø Centre, Denmark), Katia Simeonova (UNFCCC Secretariat, Germany), Youba Sokona (South Centre, Switzerland), Kiran Sura (PricewaterhouseCoopers, United Kingdom), Eliot Whittington (University of Cambridge, United Kingdom).

Other Input: Annie Dufey (Fundación Chile, Chile), Yemi Katerere (Independent Consultant, Zimbabwe).

Thanks also to:

Keith Alverson (UNEP, Kenya), Stuart Crane (UNEP, Kenya), David Crossley (Regulatory Assistance Project, Australia), Davide D'Ambrosio (International Energy Agency, France), Shyamasree Dasgupta (Jadavpur University, India), Justine Garrett (International Energy Agency, France), Antonia Gawel (Independent Consultant, Bhutan), Michael Grubb (University of Cambridge, United Kingdom), James Arthur Haselip (UNEP Risø Centre, Denmark), Michael Mendelsohn (National Renewable Energy Laboratory, USA), Pedro Filipe Paralta Carqueija (UNEP Risø Centre, Denmark), Daniel Perczyk (Instituto Torcuato Di Tella, Argentina), Lynn Price (Lawrence Berkeley National Laboratory, USA), Wilson Rickerson (Meister Consultants Group, USA), Joyashree Roy (Jadavpur University, India), Misato Sato (London School of Economics, United Kingdom), Janet Sawin (Sunna Research, USA), Andrew Scott (Overseas Development Institute, United Kingdom), Jacob Krog Søbygaard (Ministry of Climate, Energy and Buildings, Denmark), Geng Yong (National Academy of Sciences, China), Changhua Wu (The Climate Group, China).

Editorial Team:

Joseph Alcamo (UNEP, Kenya), Daniel Puig (UNEP Risø Centre, Denmark), Anne Olhoff (UNEP Risø Centre, Denmark), Volodymyr Demkine (UNEP, Kenya), Bert Metz (European Climate Foundation, Netherlands).

Project Coordination:

Daniel Puig (UNEP Risø Centre, Denmark), Anne Olhoff (UNEP Risø Centre, Denmark), Tasia Spangsberg Christensen (UNEP Risø Centre, Denmark), Volodymyr Demkine (UNEP, Kenya), John Christensen (UNEP Risø Centre, Denmark), Mette Annelie Rasmussen (UNEP Risø Centre, Denmark), Seraphine Haeussling (UNEP, France).

Secretariat and Media Support:

Harsha Dave (UNEP, Kenya), Pia Riis Kofoed-Hansen (UNEP Risø Centre, Denmark), Sunday A. Leonard (UNEP, Kenya), Mette Annelie Rasmussen (UNEP Risø Centre, Denmark), Shereen Zorba (UNEP, Kenya), Neeyati Patel (UNEP, Kenya), Kelvin Memia (UNEP, Kenya).

Gap Model Calculations

Jørgen Fenhann (UNEP Risø Centre, Denmark), Jacob Ipsen Hansen (UNEP Risø Centre, Denmark).

Climate Model Calculations

Joeri Rogelj (ETH Zurich, Switzerland).

Editor

Bart Ullstein

Design and Layout Audrey Ringler (UNEP)

Layout and Printing

UNON, Publishing Services Section, ISO 14001:2004 - certified

Contents

Glossary		vii
Acronyms		ix
Foreword		x
Executive Summary		xi
Introduction		1
Chapter 2: Emissions trends as a result of pledges and their implementation		3
2.1	Introduction	
2.2	Current global emissions	
2.3	Projected global emissions under business-as-usual scenarios	
2.4	Projected global emissions under pledge assumptions	5
2.5	National progress: do policies match pledges?	9
2.6	Summary	
Chapter 3	The emissions gap and its implications	
3 1	Introduction	
3.1	Which scenarios are analyzed?	
3.2	Emissions in line with least-cost 2° C nathways	
3.5	Emissions in line with least-cost 1 5° C nathways	14
25	Later action scoparios in the literature	17
3.5	The emissions gap: trade-offs and implications of today's policy choices	17
Chapter 4	- Bridging the gap I: Policies for reducing emissions from agriculture	
	brughing the gap is Policies for reducing emissions from agriculture	23
4.1		
4.2	Conversion of fillage to no-fillage practices	
4.3	Improved nutrient and water management in rice systems	26
4.4	Agrotorestry	
4.5	Lessons learned	
Chapter 5	: Bridging the gap II: International cooperative initiatives	
5.1	Introduction	
5.2	Current international cooperative initiatives	29
5.3	Promising areas for international cooperative initiatives to close the gap	
5.4	How to make international cooperative initiatives effective in closing the gap?	
5.5	Links with the United Nations Framework Convention on Climate Change	
5.6	Conclusions	
Chapter 6: Bridging the gap III: Overview of options		
6.1	Introduction	
6.2	Emission reduction potentials in 2020 and 2030: can the gap be bridged?	
6.3	Options to narrow and potentially bridge the emissions gap in 2020	
6.4	Conclusions	
References		

Glossary

The entries in this glossary are adapted from definitions provided by authoritative sources, such as the Intergovernmental Panel on Climate Change.

Additionality A criterion sometimes applied to projects aimed at reducing greenhouse gas emissions. It stipulates that the emission reductions accomplished by the project would not have happened anyway had the project not taken place.

Aerosols Airborne solid or liquid particles, with a typical size of between 0.01 and 10 micrometer (a millionth of a meter) that reside in the atmosphere for at least several hours. They may influence the climate directly through scattering and absorbing radiation, and indirectly by modifying the optical properties and lifetime of clouds.

Agroforestry Farming management practice characterized by the deliberate inclusion of woody perennials on farms, which usually leads to significant economic and/or ecological benefits between woody and non-woody system components. In most documented cases of successful agroforestry, tree-based systems are more productive, more sustainable and more attuned to people's cultural or material needs than treeless alternatives. Agroforestry also provides significant mitigation benefits by sequestering carbon from the atmosphere in the tree biomass.

Annex I countries The industrialised countries (and those in transition to a market economy) that took on obligations to reduce their greenhouse gas emissions under the United Nations Framework Convention on Climate Change.

Biomass plus carbon capture and storage (BioCCS) Use of energy produced from biomass where the combustion gases are then captured and stored underground or used, for example, in industrial processes. Gases generated through, for example, a fermentation process (as opposed to combustion) can also be captured.

Black carbon The substance formed through the incomplete combustion of fossil fuels, biofuels, and biomass, which is emitted in both anthropogenic and naturally occurring soot. It consists of pure carbon in several linked forms. Black

carbon warms the Earth by absorbing heat in the atmosphere and by reducing albedo, the ability to reflect sunlight, when deposited on snow and ice.

Bottom-up model In the context of this report, a model that represents a system by looking at its detailed underlying parts. For example, a bottom-up model of emissions would compute the various sources of emissions, sector-by-sector, and then add these components together to get a total emissions estimate.

Business-as-usual In the context of this report, a scenario used for projections of future emissions that assumes that no new action will be taken to mitigate emissions.

Carbon credits Tradable permits which aim to reduce greenhouse gas emissions by giving them a monetary value.

Carbon dioxide equivalent (CO₂e) A simplified way to place emissions of various radiative forcing agents on a common footing by accounting for their effect on climate. It describes, for a given mixture and amount of greenhouse gases, the amount of carbon dioxide that would have the same global warming ability, when measured over a specified time period. For the purpose of this report, greenhouse gas emissions (unless otherwise specified) are the sum of the basket of greenhouse gases listed in Annex A of the Kyoto Protocol, expressed as carbon dioxide equivalents assuming a 100-year global warming potential.

Carbon leakage The increase in greenhouse gas emissions occurring outside countries taking domestic mitigation action.

Conditional pledge Pledges made by some countries that are contingent on the ability of national legislatures to enact the necessary laws, ambitious action from other countries, realization of finance and technical support, or other factors.

Double counting In the context of this report, double counting refers to a situation in which the same emission reductions are counted towards meeting two countries' pledges. **Emission pathway** The trajectory of annual global greenhouse gas emissions over time.

Greenhouse gases covered by the Kyoto Protocol These include the six main greenhouse gases, as listed in Annex A of the Kyoto Protocol: carbon dioxide (CO_2) ; methane (CH_4) ; nitrous oxide (N_2O) ; hydrofluorocarbons (HFCs); perfluorocarbons (PFCs); and sulphur hexafluoride (SF_6) .

Integrated assessment models Models that seek to combine knowledge from multiple disciplines in the form of equations and/or algorithms in order to explore complex environmental problems. As such, they describe the full chain of climate change, including relevant links and feedbacks between socio-economic and biophysical processes.

International cooperative initiatives Initiatives outside of the United Nations Framework Convention on Climate Change aimed at reducing emissions of greenhouse gases by promoting actions that are less greenhouse gas intensive, compared to prevailing alternatives.

Kyoto Protocol The international environmental treaty intended to reduce greenhouse gas emissions. It builds upon the United Nations Framework Convention on Climate Change.

Later-action scenarios Climate change mitigation scenarios in which emission levels in the near term, typically up to 2020 or 2030, are higher than those in the corresponding least-cost scenarios.

Least-cost scenarios Climate change mitigation scenarios assuming that emission reductions start immediately after the model base year, typically 2010, and are distributed optimally over time, such that aggregate costs of reaching the climate target are minimized.

Lenient rules Pledge cases with maximum Annex I land use, land-use change and forestry (LULUCF) credits and surplus emissions units, and maximum impact of double counting.

Likely chance A likelihood greater than 66 percent. Used in this report to convey the probabilities of meeting temperature limits.

Medium chance A likelihood of 50-66 percent. Used in this

No-tillage agriculture Farming practice characterized by the elimination of soil ploughing by seeding a crop directly under the mulch layer from the previous crop. It relies on permanent soil cover by organic amendments, and the diversification of crop species grown in sequences and/or association. This approach avoids emissions caused by soil disturbances related to ploughing, and from burning fossil fuels to run farm machinery for ploughing.

Pledge For the purpose of this report, pledges include Annex I targets and non-Annex I actions, as included in Appendix I and Appendix II of the Copenhagen Accord, and subsequently revised and updated in some instances.

Radiative forcing Change in the net, downward minus upward, irradiance, expressed in watts per square meter (W/m^2) , at the tropopause due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the Sun. For the purposes of this report, radiative forcing is further defined as the change relative to the year 1750 and, unless otherwise noted, refers to a global and annual average value.

Scenario A description of how the future may unfold based on if-then propositions. Scenarios typically include an initial socio-economic situation and a description of the key driving forces and future changes in emissions, temperature or other climate change-related variables.

Strict rules Pledge cases in which the impact of land use, land-use change and forestry (LULUCF) credits and surplus emissions units are set to zero.

Top-down model A model that applies macroeconomic theory, econometric and optimisation techniques to aggregate economic variables. Using historical data on consumption, prices, incomes, and factor costs, top-down models assess final demand for goods and services, and supply from main sectors, such as energy, transportation, agriculture and industry.

Transient climate response Measure of the temperature rise that occurs at the time of a doubling of CO_2 concentration in the atmosphere.

Transiant climata response to sumulative carbon omissions

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_9251