

ACKNOWLEDGEMENTS

The present paper was drafted by Dr. Soenke Ziesche, Data Science Consultant, ESCAP ENEA. The author whishes to thank Li Zhou, Associate Social Affairs Officer, ESCAP ENEA, Tianyi Gu, Intern, ESCAP ENEA and Charlotte Arribe, Intern, ESCAP ENEA for their inputs into this report.

This working paper was initially prepared as a discussion paper for an expert group meeting titled Forum on Innovative Data Approaches to SDGs held in Incheon, Republic of Korea, from 31 May – 2 June 2017, jointly organised by ESCAP East and North-East Asia office, and ESCAP Statistics Division. At this meeting, experts from over 12 countries discussed and reviewed this report, with feedback integrated subsequent to the meeting. The author is thankful for the inputs from the experts.

Disclaimer

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or its authorities, or concerning the delamination of its frontiers or boundaries. The opinions, figures and estimates set forth in this publication are the responsibility of the authors, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations.

Table of Contents :

EXECUTIVE SUMMARY	008
INTRODUCTION: SDGS, TARGETS AND INDICATORS	011
Background	011
Tier classification of SDG indicators	012
INTRODUCTION: BIG DATA, INTERNET OF THINGS AND ARTIFICIAL INTELLIGENCE	015
Big data	015
Terminology and definitions	015
Background	017
Taxonomy of big data	018
Opportunities ————————————————————————————————————	019
Challenges	023
Internet of Things	028
Terminology and definitions	028
Background	029
Taxonomy of IoT sensors	029
Opportunities	030
Challenges	030
Artificial Intelligence	032
Terminology and definitions	032
Background	032
Taxonomy of AI methods	
Opportunities	
Challenges	034
Synergies for capturing and analysing data	035
OVERVIEW OF BIG DATA APPROACHES	036
Background	036
Structure of the overview and explanations	036

Exhaust data	037
Mobile phone data	037
Financial transactions	042
Online search and access logs	044
Administrative data / citizen cards	046
Postal data	048
Benefits, risks and recommendations	050
Sensing data	050
Satellite and UAV imagery	050
Sensors in cities, transport and homes	062
Sensors in nature, agriculture and water	066
Wearable technology	071
Biometric data	074
Benefits, risks and recommendations	076
Digital content	077
Social media data	077
Web scraping	082
Participatory sensing / crowdsourcing	
Health records	
Radio content	
Benefits, risks and recommendations	094
Al applications towards SDGs without big data	094
Benefits, risks and recommendations	097
KEY FINDINGS AND ANALYSIS	098
Not suitable indicators for big data	099
Indicators with big data approaches	099
Targets with big data approaches	101
CONCLUSION	102
REFERENCES	103
ANNEX - SDG TARGETS, INDICATORS AND BIG DATA APPROACHES	108

List of Tables :

Table 1	SDGs with numbers of targets, indicators and tiers	014
Table 2	CDR example	016
Table 3	Categories and sources of big data	018
Table 4	Types of sensors, functionalities and examples	029
Table 5	Al research topics	033
Table 6	Big data approaches: mobile phone data	041
Table 7	Big data approaches: financial transactions	043
Table 8	Big data approaches: Online search and access logs	045
Table 9	Big data approaches: Administrative data / citizen cards	047
Table 10	Big data approaches: Postal data	049
Table 11	Big data approaches: Satellite and UAV imagery	061
Table 12	Big data approaches: Sensors in cities, transport and homes	065
Table 13	Big data approaches: Sensors in nature, agriculture and water	070
Table 14	Big data approaches: Wearable technology	073
Table 15	Big data approaches: Biometric data	075
Table 16	Big data approaches: Social media data	081
Table 17	Big data approaches: Web scraping	084
Table 18	Big data approaches: Participatory sensing / crowdsourcing	088
Table 19	Big data approaches: Health records	091
Table 20	Big data approaches: Radio content	093
Table 21	Big data approaches: Al application towards SDGs without big data	096
Table 22	Approaches for calculation of indicators by tier category	099
Table 23	Approaches for calculation of indicators by SDG	100
Table 24	Approaches for achievement of targets by SDG	101
Table 25	SDG targets, indicators and big data approaches	132

List of Abbreviations :

ΑI

Artificial intelligence

CDR

Call detail record

CSR

Corporate social responsibility

ENEA

East and North East Asia

ESCAP

Economic and Social Commission for Asia and the Pacific **IAEG**

Inter-Agency and Expert Group

IoT

Internet of things

MDG

Millennium Development Goal

M₂M

Machine-tomachine M₂P

Machine-to-person

P₂P

Person-to-person

SDG

Sustainable Development Goal **UAV**

Unmanned aerial vehicle

Executive summary

This report showcases around 140 big data approaches to potentially assist traditional statistics methods in capturing and analysing data to support the calculation of SDG indicators and the achievement of SDG targets. The presented approaches also aim to replace costly occasional surveys of traditional statistics with cheaper real-time information. The structure of the report is as follows: First, the SDGs are introduced with a focus on current challenges regarding lacking data as well as methodologies. Then an overview of big data, IoT and AI is given with a focus on categorization, opportunities and challenges. The main section is dedicated to describing, classifying and linking the aforementioned approaches to suitable SDG indicators and targets. Benefits, risks and potential recommendations for pilot projects are discussed per big data category. This is followed by a summary of the key findings, an analysis and the conclusion.

The 2030 Agenda for Sustainable Development for the time period from 2016 until 2030 comprises 17 Sustainable Development Goals (SDGs), subdivided into 169 targets and 232 indicators. In comparison, there were only 8 Millennium Development Goals (MDGs) with 21 targets and 60 indicators for the previous period from 2000 until 2015. Not only do the SDGs cover a much broader range of issues, the SDG indicators are also very different from and more complex than the MDG indicators, thus in many instances challenging for traditional statistics. Therefore, innovative approaches are required. The technological environment has continued to advance in recent years to a stage where it now appears promising to harness big data for both the achievement of SDG targets as well as the calculation of SDG indicators. Many of the new big data are passively emitted and collected as by-products of people's interactions with and uses of digital devices. Data coming from various sources provide unique insights about human behaviour and beliefs, which could be harnessed to increase the quality of life of these people, thereby contributing ultimately to the achievements of the SDGs.

In contrast to MDG data, which were mostly collected and owned by Governments, critical SDG data are produced passively by people, collected by machines and owned by corporations. Under the umbrella of corporate social responsibility, data philanthropy is a win-win opportunity for corporations to cost-efficiently improve their reputation while the UN or other organizations are receiving the data in order to use them. The concept of open data calls for Governments to provide free of charge, up to date, openly licensed and machine readable online data to enable data analysis by NGOs or other stakeholders.

Consequently, bigger quantities of data have come with low-costs and real-time availability, enabling the collection

预览已结束,完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_1257

