Annex II

ASIAN HIGHWAY CLASSIFICATION AND DESIGN STANDARDS

I. GENERAL

The Asian Highway classification and design standards provide the minimum standards and guidelines for the construction, improvement and maintenance of Asian Highway routes. Parties shall make every possible effort to conform to these provisions both in constructing new routes and in upgrading and modernizing existing ones. These standards do not apply to built-up areas.¹

II. CLASSIFICATION OF ASIAN HIGHWAY ROUTES

Asian Highways are classified as shown in table 1.

Classification	Description	Pavement type
Primary	Access-controlled highways	Asphalt or cement concrete
Class I	4 or more lanes	Asphalt or cement concrete
Class II	2 lanes	Asphalt or cement concrete
Class III	2 lanes	Double bituminous treatment

Table 1. Asian Highway classification

"Primary" class in the classification refers to access-controlled highways. Accesscontrolled highways are used exclusively by automobiles. Access to the access-controlled highways is at grade-separated interchanges only. Mopeds, bicycles and pedestrians should not be allowed to enter the access-controlled highway in order to ensure traffic safety and the high running speed of automobiles. At-grade intersections should not be designed on the access-controlled highways and the carriageway should be divided by a median strip.

"Class III" should be used only when the funding for the construction and/or land for the road is limited. The type of pavement should be upgraded to asphalt concrete or cement concrete as soon as possible in the future. Since Class III is also regarded as the minimum desirable standard, the upgrading of any road sections below Class III to comply with the Class III standard should be encouraged.

III. DESIGN STANDARDS OF ASIAN HIGHWAY ROUTES

1. <u>Terrain classification</u>

Terrain classification is shown in table 2.

¹ The Party should indicate built-up areas in accordance with its requirements.

Terrain classification	Cross slope
Level (L)	0 to 10 per cent
Rolling (R)	More than 10 to 25 per cent
Mountainous (M)	More than 25 to 60 per cent
Steep (S)	More than 60 per cent

Table 2. Terrain classification

2. Design speed

Design speeds of 120, 100, 80, 60, 50, 40 and 30 kilometres per hour are to be used. The relation between design speed, highway classification and terrain classification is shown in table 3. A design speed of 120 km/h should be used only for Primary class (access-controlled highways), which has median strips and grade-separated interchanges.

Table 2	Dagion anoad	highway	aloggification	and	l terrain classification
Table 5.	Design speed.	menwav	classification	anu	l terram classification

				(Unit: km/h)
Terrain	Primary	Class I	Class II	Class III
Level (L)	120	100	80	60
Rolling (R)	100	80	60	50
Mountainous (M)	80	50	50	40
Steep (S)	60	50	40	30

3. <u>Cross-section</u>

The dimensions, such as right-of-way width, lane width, shoulder width, median strip width, pavement slope and shoulder slope for each highway classification, are shown in table 4.

Pedestrians, bicycles and animal-drawn carts should be separated from through traffic by the provision, where practical, of frontage roads and/or sidewalks for the sections where smooth traffic is impeded by the existence of such local traffic.

standards
design
Highway
Asian
Table 4.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Highway classification	fication	Prima	Primary (4 or more lanes)	more la	nes)	Class	[(4 or m	Class I (4 or more lanes)		Class II (2 lanes)	2 lanes)		C	lass III	Class III (2 lanes)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Terrain classific:	ation	Γ	R	Μ	s	L	R		Г	R	Μ	S	L	R	Μ	S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Design speed (ki	n/h)	120	100	80	60	100	80	50	80	60	50	40	60	50	40	30
$ \begin{array}{ c c c c c c c c c c } \hline \hline & & & \hline & & \hline & & & \hline & & \hline & & & \hline & & & $	Width (m)	Right of way		(50)				(40)			(4	()			(3(((
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Lane		3.5((3.50			3.5	09			3.00 (3.25)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Shoulder	3.	00	2.5	0	3.0	0	2.50	2	.50	2.(00	1.5 (2	2.0)	0.75 (1.5)	1.5)
$ \begin{array}{ c c c c c c c c c c } \hline 520 & 350 & 310 & 115 & 350 & 210 & 115 & 80 & 50 & 1 \\ \hline \hline 22 & & & & & & & & & \\ \hline 22 & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & & & \\ \hline 32 & & & & & & & & & & & & & & & \\ \hline 32 & & & & & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & & & \\ \hline 22 & & & & & & & & & & & & & & & & & $		Median strip	4	00	3.0	0	3.0	0	2.50	Z	I/A	/N	A.	N/N	A	N/A	A
) 2 2 2 2 2 2 2 2 $3-6$ $3-6$ $3-6$ $3-6$ $3-6$ $3-6$ $3-6$ 2 <	Min. radii of hor (m)	izontal curve	520	350	210			210	80	210	115	80	50	115	80	50	30
$ \begin{array}{ c c c c c c c } \hline \hline & 3-6 & 3-6 & 3-6 & 3-6 & \hline & 3-6 & \hline & 3-6 & \hline & & 3-6 & \hline & & & \hline & & & & \hline & & & & \hline & & & & & \hline & & & & & \hline & & & & & & & \hline & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & & \hline & & & & & & & & & & \hline & & & & & & & & & & \hline & & & & & & & & & & & \hline & & & & & & & & & & & & \hline & & & & & & & & & & & & \hline & & & & & & & & & & & & & & \hline & & & & & & & & & & & & & & & \hline & & & & & & & & & & & & & & \hline & & & & & & & & & & & & & & & & \hline &$	Pavement slope	(%)		2				2			5				2 -	5	
Asphalt/cement concreteAsphalt/cement concreteAsphalt/cement concrete 10 10 10 4 5 6 7 4 5 6 7 HS20-44HS20-44HS20-44HS20-44HS20-44	Shoulder slope ((%)		3 - (5			3 - 6			3 -	9.			3 -	9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Type of pavemen	nt	Aspł	alt/ceme	nt concr	ete	Asph	ult/cemen	t concrete	Asj	phalt/cem	ent conc	rete	Dbl. l	bituminc	ous treatn	nent
4 5 6 7 4 5 6 7 4 5 HS20-44 HS20-44 HS20-44 HS20-44 HS20-44 HS20-44	Max. supereleva	tion (%)		10				10			1	(1((
HS20-44 HS20-44 HS20-44	Max. vertical gra	ide (%)	4	5	9	7	4	5	6 7	4	5	9	7	4	5	9	7
	Structure loading	g (minimum)		HS20-	44			HS20-4	44		HS2()-44			HS2()-44	

Notes: Figures in parentheses are desirable values. Minimum radii of horizontal curve should be determined in conjunction with superelevation. The recommended width of the median can be reduced with the proper type of guard fence. The Parties should apply their national standards when constructing structures such as bridges, culverts and tunnels along the Asian Highway.

4. <u>Horizontal alignment</u>

The horizontal alignment of the road should be consistent with the topography of the terrain through which it passes. Minimum curve radii should be applied only when necessary and should be used in conjunction with transition curves. Compound curves should be avoided whenever possible. The minimum radii of horizontal curves are shown in table 5 for each highway class.

				(Unit: m)
Terrain	Primary	Class I	Class II	Class III
Level (L)	520 (1 000)	350 (600)	210	115
Rolling (R)	350 (600)	210 (350)	115	80
Mountainous (M)	210 (350)	80 (110)	80	50
Steep (S)	115 (160)	80 (110)	50	30

Table 5	Minimum	radii	of horizonta	1 curve
1 uoie 5.	winnun	ruun	of nonzonta	i cui ve

Note: Figures in parentheses are desirable values.

It is recommended that the application of the minimum curve radii be limited to unavoidable cases and values larger by 50 to 100 per cent be applied.

It is recommended that the combination of distance, radius and gradient of hairpin bends in the mountainous and steep terrain be considered.

Transition curves should be applied to connect curves with radii smaller than the values shown in table 6. It is also recommended that transition curves be applied even in cases where the radii are as large as twice the values in table 6.

Table 6. Radii for which transition curves should be applied

(T	÷ • .	~
11	Init.	mì
ιu	Jnit:	1111

				(Unit: m)
Terrain	Primary	Class I	Class II	Class III
Level (L)	2 100	1 500	900	500
Rolling (R)	1 500	900	500	350
Mountainous (M)	900	500	350	250
Steep (S)	500	500	250	130

The minimum transition curve length shown in table 7 is recommended.

				(Unit: m)
Terrain	Primary	Class I	Class II	Class III
Level (L)	100	85	70	50
Rolling (R)	85	70	50	40
Mountainous (M)	70	50	40	35
Steep (S)	50	50	35	25

Table 7. Minimum transition curve length

The maximum superelevation should be 10 per cent for all terrain classifications.

5. <u>Vertical alignment</u>

The vertical alignment of any highway should be as smooth as economically feasible, that is, there should be a balance of cutting and filling to eliminate the rolling nature of land. In the use of the maximum vertical gradient, it should be kept clear in the mind of the designer that, once constructed to a given vertical grade, the highway cannot be upgraded to a lesser gradient without the loss of the entire initial investment.

The maximum vertical grade shown in table 8 should be used for all highway classes.

Terrain classification	Maximum vertical grade
Level (L)	4 per cent
Rolling (R)	5 per cent
Mountainous (M)	6 per cent
Steep (S)	7 per cent

Table 8. Maximum vertical grade

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_4632