Outlook What's next

in traceability?

Dr Heiner Lehr heiner@syntesa.eu

- Adoption of traceability systems for purpose of food safety and disease control has only been possible by mandate
 - Industry unhappy
 - Complaints about unfair competition of exporting nations
 - Unclear cost-benefit relationship
- Insistence on food scares has led to perception of traceability as a cost
 - Cost benefit studies are difficult, but there are clear indications that
- There is a shift away from traceability as a purpose of its own to traceability as an enabling technology
- Traceability as a marketing tool is still under "evaluation"
- In the following, two examples for potential services

Case Study	Pathogen	Maximum Illnesses Prevented	Percent of Total Illnesses Prevented	Average Economic Impact per Day Reduction	25% ↓ Time	50% ↓ Time	75% ↓ Time	Maximum Economic Benefit (+100%)
Peppers and tomatoes (2008)	Salmonella Saintpaul	790	55%	\$277,275	\$8M	\$12M	\$13.6M	\$14M
Cantaloupe (2008)	Salmonella Litchfield	1	2%	1,053	\$18K	\$18K	\$18K	\$18K
Raw alfalfa sprouts (2009)	Salmonella Saintpaul	73	31%	\$23,758	\$465K	\$806K	\$1.2M	\$1.3M
Red and black pepper spice (2010)	<i>Salmonella</i> Montevideo	47	17%	\$16,496	\$286K	\$573K	\$716K	\$841K
Unspecified Mexican food (2010)	<i>Salmonella</i> Baildon	2	3%	\$1,377	\$0	\$0	\$18K	\$36K
Shell eggs (2010)	Salmonella Enteritidis	120	3%	\$268,500	\$537K	\$1.1M	\$1.6M	\$2.1M
Ground turkey* (2011)	Salmonella Heidelberg	17	13%	\$16,016	\$72K	\$125K	\$179K	\$304K
Fresh cantaloupe (July 2011)	Listeria monocytogenes	28	19%	\$153,440	\$219K	\$384K	\$493K	\$767K

*FSIS regulated product

<u>Source: IFT</u>, Pilot Projects for Improving Product Tracing along the Food Supply System – Final Report

Recordkeeping Benefits	Growers (n=2)	Processor (n=6)	Distributors (n=8)	Retailers (n=4)
Improved Brand Reputation	100%	33%	62%	50%
Increased Consumer Confidence	0%	67%	75%	25%
Expanded Markets	50%	33%	50%	25%
Improved Supply Chain Management	50%	67%	62%	100%
Insurance Cost Reduction	50%	33%	12%	0%
Supply Chain Confidence	0%	83%	75%	25%
Decreased Spoilage	50%	67%	75%	25%
Process Improvement	100%	33%	100%	100%

Source: IFT

SUSTAINABILITY MONITORING

- Typically the footprint of a product is determined by calculating inputs and outputs during the lifetime of the product
- Methods range from
 - Simplified calculators to
 - Sophisticated *life cycle assessment* (LCA)
- These methods
 - rely on the existence of *databases* which supply footprint contributions for *typical* ingredients, distances travelled etc
 - are <u>abstract</u> and <u>static</u>, i.e.
 - provide a *sketch* of the footprint at a particular point in time

- LCA is accepted as the standard methodology to assess footprints, but
 - It is very time consuming
 - Requires extensive expertise
 - Has to be repeated regularly
 - Is very expensive
- => LCA is not apt for just-in-time sustainability management
- Solution
 - Use operational data available from traceability to calculate impact, based on LCA
 - Create a decentralised infrastructure for data recording, with a consolidation motor
- This provides the three basic ingredients:
 - Calculation of inputs and outputs mapped to processes or assets, so that an operational process can be linked to the corresponding footprint
 - An infrastructure and applications for decentralised data capture
 - An infrastructure and applications for centralised reporting

- LCA: an established method to determine footprint impacts
- SMCCP (sustainability management and critical control points): a new method to determine which operational processes or assets are essential to monitor
- CSI-MS (Chain Sustainability Information Management System): chain traceability and information management system for
 - Collecting sustainability information,
 - Collating it and

https://www.yunbaogao.cn/report/index/report?reportId=5_5319

