UNESCAP - UNHABITAT

National Capacity Building Workshop on Sustainable and Inclusive Transport Development

3-4 July 2014, Vientiane, Lao PDR

Abhijit Lokre
Associate Professor
Centre of Excellence in Urban
Transport
CEPT University

Emerging Technologies

Content

Urban Transport and Environment
Vehicle Technology and Market Scenario
Vehicle Technology Choice
Vehicle Technology and Environment
Fuel Energy Content
Comparative Statement – Fuel Technology
Cost Factor – Diesel vs CNG
Challenges with Adopting Technologies
Summary

Centre of Excellence in Urban Transport, CEPT University

Urban Transport and Environment

- Air pollution is a major environmental health problem affecting people worldwide
- Traffic is predominant source of air pollution
- Cities manage environment regulations by planning, policies and vehicle technologies
- To regulate CO2 emissions and local pollution, alternate vehicle technology is key.

Vehicle Technology and Market Scenario

Market Availability

Wide range of alternative fuels & technologies are available in market

- Fuel technology for Buses
 - Standard Diesel
 - Ultra Low Sulphur Diesel (ULSD),
 - · Compressed Natural Gas (CNG),
 - Liquefied Petroleum Gas (LPG),
 - Biofuel (bio-methane/bio-diesel),
 - Electricity
 - Hydrogen Fuel Cell
- Engine Technology
 - Internal Combustion Engine (various EURO stages)
 - Hybrid

Vehicle Technology and Market Scenario

Market Development

- Diesel has established market in bus vehicle
- Needs to compete with other fuel alternatives innovated R&D on engine / propulsion technology with lower emissions
- CNG over past few decades has established its market
- Initial infrastructure for refueling & maintenance was created
- Some safety concerns are on potential fire risk exists with CNG
- Hybrid vehicle are growing in market in Mexico and Brazil

Centre of Excellence in Urban Transport, CEPT University

Vehicle Technology Choice

Factors influencing fuel and vehicle technology type choice

- Policy support, Tax incentives, Funding
- Life Cycle Cost
- Availability of fuel and refueling infrastructure
- Maintenance facilities Infrastructure and technical expertise
- Scope of replacement
- Priority to air pollution or green house emissions

Emission	Local	GHG	Regulating Regions	Emission norm followed in various regi			
Туре	Pollutant	pollutant		Country	2012	Future	Location
СО	Υ		US, Europe, Brazil, India, Mexico		ppm	Target	
••	.,	.,		Brazil	50	10	Major cities
CO ₂	Y	Υ	US		500	50	Metro Area
NOx	Y	Y	US, Europe, Brazil, India, Mexico		1800	500	Nationwide
Total HC			Europe, Brazil, India	Mexico	15	15	Metro Area
Non-	Υ		US, Mexico		500	50	Nationwide
Methane HC				India	50		Major cities
PM	Υ		US, Europe, Brazil, India, Mexico		350		Metro Area
CH₄		Υ	Europe		500		Nationwide
SO ₂	Υ		US, Europe, Brazil,	US	15		Nationwide
302	1		India, Mexico	Europe	10		Nationwide

Vehicle Technology and Environment

Regulation norms have been developed for diesel engine technology

- Local pollutant regulations are existing two decades.
- Remarkable research in reducing pollutants seen in past decade
- Regulations of GHG emission are recent considerations

Emission norms for bus						
Stage	Year	СО	HC	NOx	PM	
		g/kwh				
Euro – 1	1992	8.1	1.98	14.40	0.648	
Euro – 2	1998	7.2	1.98	12.60	0.270	
Euro – 3	2000	3.8	1.19	9.00	0.180	
Euro – 4	2005	2.7	0.83	6.30	0.036	
Euro – 5	2008	2.7	0.83	3.60	0.036	
Euro – 6	2013	2.7	0.23	0.72	0.018	
Source: Lindqvist 2012.						

Centre of Excellence in Urban Transport, CEPT University

Fuel Energy Content

Diesel remains as most preferred fuel by urban local authorities / operators as it has high energy density; i.e. more mileage.

Bio-diesel also has high energy content

Energy content in fuel					
Fuel Type	Energy	Fuel efficiency			
Diesel	128,000 – 130,000 BTU	3.2 mile/DGE			
Bio-diesel	117,000 BTU	3.3 mile/DGE			
CNG	33,000 – 44,000 BTU	2.7 mile/DGE			
LNG	≈ 73,500 BTU	2.7 mile/DGE			
Hydrogen	≈ 6,500 – 16,000 BTU	2.7 mile/DGE			
Source: Department of Energy 2012 & TCRP 2011 BTU – British Thermal Unit; DGE – Diesel Gallon Equivalant					

Centre of Excellence in Urban Transport, CEPT University

Comparative Statement – Fuel Technology

Comparison of Fuel Technology - 1

Diesel	CNG	Bio-methane / Biogas	Bio-diesel / FAME
Non-renewable	Non-renewable	Renewable fuel	Renewable fuel
		Fuel price depends on production cycle and supply chain	Fuel price depends on production cycle and supply chain
		Production volume is relatively smaller to input	
Established market & relevant infrastructure	Established market & relevant infrastructure	Technology similar to CNG; makeover in market easier	

Extract from Clean Buses – Experiences with Fuel and Technology Options: by- clean fleets - 2014

Centre of Excellence in Urban Transport, CEPT University

Comparative Statement – Fuel Technology

Comparison of Fuel Technology - 1

Diesel		CNG	Bio-methane / Biogas	Bio-diesel / FAME	
		Major saving in PM	Significant savings on	Significant savings	
		and NOx emission	CO ₂ emissions	on CO ₂ emissions	
		compared to diesel	PM emission are	Significant savings	

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_5339

