

Facilitating the deployment of highly and fully automated vehicles in road traffic along the Asian Highway Network

Study Report 2022

NAME

The Economic and Social Commission for Asia and the Pacific (ESCAP) serves as the United Nations regional hub promoting cooperation among countries to achieve inclusive and sustainable development. As the largest regional intergovernmental platform with 53 member States and 9 associate members, ESCAP has emerged as a strong regional think-tank, offering countries sound analytical products that shed insight into the evolving economic, social and environmental dynamics of the region. The Commission's strategic focus is to deliver on the 2030 Agenda for Sustainable Development by reinforcing and deepening regional cooperation and integration to advance connectivity, financial cooperation and market integration. The research and analysis of ESCAP coupled with its policy advisory services, capacity-building and technical assistance to governments aims to support countries' sustainable and inclusive development ambitions.

The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Secretariat. The opinions, figures and estimates set forth in this publication are the responsibility of the authors and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

Mention of firm names and commercial products does not imply the endorsement of the United Nations.

The present publication was prepared by the Transport Division of ESCAP under the overall guidance of Ms. Azhar Jaimurzina Ducrest, Transport Connectivity and Logistics Section Chief and led by Mr. Edouard Chong, with contributions from Mr. Changju Lee, Economic Affairs Officers, Transport Division. Core authors comprised of (alphabetical order): Mr. Andrey Yershov, Dr. Mikhail Nizov, Dr. Vladimir Kryuchkov and Dr. Yu Shen.

Grateful acknowledgment is made to the Government of the Russian Federation for the generous funding of this study.

Table of Contents

0.	Executi	ecutive Summary			
1.	1. Introduction				
1	.1. Ove	erview of the AH Route 9	.5		
2	.2. Rat	ionale, Purpose and Scope of the Study	.5		
2.		rectinologies in Smart Transport Systems	. /		
2	2.1. Ove	Automated Vehicles (AVs)	.7		
	2.1.2.	Connected Vehicles (CVs) & Cooperative-Intelligent Transport Systems (C-ITS)	9		
	2.1.3.	Smart Cities	13		
	2.1.4.	Infrastructure Required for Operation	14		
2	2.2. Spe 2.2.1.	cific Status of Countries along the AH 9 Route The Russian Federation	15 15		
	2.2.2.	Kazakhstan	17		
	2.2.3.	China	18		
2	2.3. Les	sons Learned in Asia and the Pacific	19		
	2.3.1.	Singapore	19		
	2.3.2.	Australia	20		
	2.3.3.	The Republic of Korea	20		
	2.3.4.	Greater Region	21		
2	2.4. Les	sons Learned from Other Regions	21		
	2.4.1.	Europe	21		
	2.4.2.	United States	22		
2	2.5. Pote	Safety Improvements	23 23		
	2.5.2.	Economic Savings	23		
	2.5.3.	Greenhouse Gas Reduction	24		
3.	Country	v Feasibility Studies	25		
3	6.1. Chi	na	25		
-	3.1.1.	Technical and Operational Condition of the AH route 9	25		
	3.1.2.	Strategic Plans for Smart Highway Development	27		
	3.1.3.	Representative Smart Highway Pilot Projects	32		
	3.1.4.	Availability of Smart Infrastructure	33		
	3.1.5.	Usage of Highly and Fully Autonomous Vehicles	34		
	3.1.6.	Social Acceptance of HFAV	37		
	3.1.7.	Legal and Regulatory Framework	38		
3	3.2. Kaz	akhstan	41		
	3.2.1.	Technical and Operational Condition of the AH route 9	41		
	3.2.2.	National and Regional Policy Initiatives	47		

3.2.3.	Research and Development Initiatives	49				
3.2.4.	Usage of Highly and Fully Autonomous Vehicles	50				
3.2.5.	Current Status and Development Plans for Smart Infrastructure	50				
3.2.6.	Social Acceptance of HFAV	54				
3.2.7.	Data Security and Privacy Concerns	55				
3.2.8.	Legal and Regulatory Framework	56				
3.3. The 3.3.1.	Russian Federation Technical and Operational Condition of the AH route 9	58 58				
3.3.2.	Strategic Plans for the AH route 9 Development	62				
3.3.3.	Current Status and Plans for ITS Deployment	63				
3.3.4.	Adequacy of the AH route 9 Infrastructure for Autonomous Vehicles	66				
3.3.5.	Social Acceptance of Highly and Fully Autonomous Vehicles	67				
3.3.6.	Legal and Regulatory Framework	68				
3.3.7.	Representative Research and Development Projects	68				
3.3.8.	Usage of Autonomous Vehicles	76				
4. Conclus	sions and Policy Recommendations	77				
4.1. Les 4.2. Les 4.3. Pol	sons Learnt from Technological Status and Regulatory Investigations sons Learnt from Feasibility Studies icy Recommendations	77 78 79				
4.3.1.	Proactive Policy Support at the National Level	79				
4.3.2.	Enhancement of Cooperation and Collaboration Among Neighbouring Countries	80				
4.3.3.	Guidelines on Establishing Overarching Strategies Along AH Routes	80				
References						

Abbreviations:

Abbreviation	Full Name
AADT	Average annual daily traffic
ADAS	Advanced driver assistance systems
ADS	Automated driving system
AL	Automatization level (of an automated vehicle)
ATMS	Automated traffic management systems
BRI	Belt and Road Initiative
CITS	Cooperative intelligent transport systems
CEN	Comité Européen de Normalisation (Committee of European standards)
СТ	Committee of Transport of Kazakhstan
DRT	Directorate of Road Transport of Kazakhstan
EAEU	Eurasian Economic Union
ERA-GLONASS	State Automated Information System in Russian Federation
ETSI	European Telecommunications Standards Institute
FOC	Fibre optical cable
FSUE	Federal State Unitary Enterprise (a legal form of state-owned company)
GOST	National standard in Russian Federation
GPRS	General Packet Radio Service
HFAV	Highly and fully automated vehicles (both trucks and cars)
ICT	Information and Communication Technologies
ISO	International Organisation for Standardisation
ITC	International Transport Corridor
ITS	Intelligent transport system
LTE	Long-term evolution (wireless broadband communication standard)
MIID	Ministry of Industry and Infrastructure Development of Kazakhstan
ODD	Operational design domain
OICA	Organisation Internationale des Constructeurs d'Automobiles
V2C	Vehicle to cloud
V2I	Vehicle to infrastructure
V2V	Vehicle to vehicle
V2X	Vehicle to everything

0. Executive Summary

This report assesses the current connectivity status along the Asian Highway 9 (the AH route 9 or the West Europe – West China International Transport Corridor) identifying policy, infrastructure and technology gaps and challenges for seamless international connectivity for highly- and fully automated road vehicles (HFAV) in China, Kazakhstan and the Russian Federation (the target countries).

In addition to the feasibility analysis, the report also offers possible directions for future development and use of HFAV along the AH route 9 in the target countries in terms of policies and regulations, road infrastructure, smart transport systems and onboard vehicle devices.

This report consists of five Chapters organised in the following way:

- Chapter 1 introduces the purpose and the scope of the Study;
- Chapter 2 presents basic backgrounds for the existing technologies in ITS and autonomous driving covering the definitions and concepts of automated vehicles, connected vehicles, cooperative-ITS and smart cities;
- Chapter 3 discusses the general technical and operational conditions for the use of HFAV along the AH route 9 in the target countries, including current status and development plans for their physical and smart infrastructures, representative R&D initiatives and application experiences of automated vehicles, as well as legal and regulatory frameworks and challenges;
- Chapter 4 summarises key findings of the Study and provides policy recommendations to help to streamline the deployment of HFAV along the AH route 9 in the target countries; and
- Chapter 5 concludes the report.

The report has been prepared by the Secretariat based on inputs of individual consultants and national experts engaged by UNESCAP in 2020-2021.

1. Introduction

1.1. Overview of the AH Route 9

The Asian Highway 9 (AH route 9) is a land route connecting Chinese seaport Lianyungang with Saint Petersburg, the "north capital" and seaport of the Russian Federation, across the territories of China, Kazakhstan and the Russian Federation.

Asian Highway route 9

St. Petersburg – Moscow – Ulyanovsk – Togliatti bypass – Samara – Orenburg – Sagarchin – Zhaisan – Aktobe – Kyzylorda – Shymkent – Taraz – Almaty – Khorgas – Horgos – Urumqi – Lianyungang

Figure 1. AH9 route: Intergovernmental Agreement on Asian Highway Network, Annex I

The total length of the AH route 9 is 8,445 km of which 2,233 km run through the territory of the Russian Federation, 2,787 km through Kazakhstan, and 3,425 km through China.

The route represents a continental alternative to the Trans-Siberian Railway and the maritime traffic through the Suez Canal aiming to reduce the travel time from 45 days required for sea freight shipping and 14 days for freight transport along the Trans-Siberian Railway to 10 days by road.

In China, the route is known as "the Lianyungang–Khorgas Expressway" (Lianhuo Expressway, G30) whereas in Kazakhstan and in the Russian Federation it is referred to as "the West Europe – West China International Road Corridor". It encompasses several core national highways across the target countries as it traverses their national boundaries and huge territories.

The scope of analysis of the study will give particular focus to highly and fully automated vehicles (HFAV) and smart transport systems along the AH route 9.

1.2. Rationale, Purpose and Scope of the Study

The use of highly and fully automated vehicles (HFAV) and smart transport systems (also referred to as ITS) can significantly reduce the economic, social and environmental costs of passenger and freight transport, while enhancing its overall quality and resilience. Although this potential contribution is widely acknowledged, their implementation in Asia and the Pacific in general, and in the target countries in particular, is lagging behind due to various factors, including low awareness of the role of smart transport systems, limited capacity for implementation and a lack of regional cooperation, hindering the exchange of best practices and experiences.

The use of highly and fully automated vehicles on international road corridors will depend on the progress made by countries in implementing smart transport technologies at the national level. At the same time, highly and fully automated vehicles for international transport will depend on achieving a common understanding at the regional level of the principles of using smart transport systems, as well as on the willingness and ability of countries to jointly address issues related to transport infrastructure and operational needs along highways or at border crossings. As the implementation of any emerging technologies must come with relevant laws and policies, the development of the autonomous vehicle industry is also inseparable from the support of the legal system.

This Study has been launched by ESCAP with the purpose to facilitate the deployment of highly and fully automated vehicles in road traffic along the AH route 9 within the territories of China, Kazakhstan, and the Russian Federation, and assist other countries of the region by sharing lessons learnt and knowledge accumulated to date to increase the common understanding and awareness of current initiatives, challenges and advantages related with the introduction of HFAV in road traffic at national, regional and global levels.

In this regard, the scope of the Study includes collection and analysis of available information and data on the AH route 9 within the target countries and in a broader regional context to assess potential operationality of HFAV along the AH route 9. Respectively, the research subjects of the Study include: (i) current status and development plans for road infrastructure and smart systems along the AH route 9 within the territories of the target countries; (ii) ongoing and planned national initiatives related to the development and introduction of HFAV in road traffic; and (iii) availability and usage of ITS and other smart technologies along the AH route 9 which can support smart HFAV operation.

Based on the findings of the Study, the overall adequacy of the existing infrastructure and operational connectivity was been assessed and existing conditions and gaps of technologies and infrastructure were identified.

The subject of the Study is highly relevant to support the efforts of the target countries in developing their smart infrastructure in line with the global trends that would allow a seamless operation of automated freight road vehicles along the AH route 9 in the future. In this sense, improving the sustainability performance of international road transport by using highly or fully automated vehicles, can contribute to the delivery of the region's sustainable development agenda.

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_80