

SUSTAINABLE URBAN ENERGY

FOR A BETTER URBAN FUTURE

Sustainable Urban Energy: A Sourcebook for Asia

Copyright © United Nations Human Settlements Programme (UN HABITAT), 2012 All rights reserved

United Nations Human Settlements Programme (UN-HABITAT) PO Box 30030, Nairobi, Kenya Tel: +254 2 621 234 Fax: +254 2 624 266 www.unhabitat.org

HS/084/12 ISBN: 978-92-1-131613-3

ACKNOWLEDGEMENTS

Principal author: Brahmanand Mohanty
Contributors: Vikram Devatha, Krish Murali Eswar, Radha Eswar, Amit Kumar Gope, Chandrasekhar Hariharan, Jitendar, Shashi Kad, Vincent Kitio, Sebastian Lange, Martin Scherfler
Coordinator: Berhard Barth
Editors: Bernhard Barth, Fernando Cabrera, Roman Rollnick
Design and Layout: Deepanjana Chakravarti

DISCLAIMER

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning delimitation of its frontiers or boundaries, or regarding its economic system or degree of development. The analysis, conclusions and recommendations of the report do not necessarily reflect the views of the United Nations Human Settlements Programme, the Governing Council of the United Nations Human Settlements Programme or its Member States.

SUSTAINABLE URBAN ENERGY

A Sourcebook for Asia

FOREWORD by Prof. Kwi-Gon Kim

Confronting the challenges of fossil fuels depletion looming large and rapid climate change, it is inevitable for cities to develop and implement urban energy management solutions for their sustainable future. This publication has been created as collaboration between International Urban Training Centre (IUTC) and UN-HABIATAT in order to provide basic principles, knowledge and diverse case studies on sustainable urban energy planning and management. The publication reflects knowledge and experience gained from the last five years of training programmes operation at IUTC, and I am certain that it will provide far more than basic information but also practical and hands-on guideline for actual implementation in the cities of the Asia and Pacific Region. I hope this Sourcebook will serve to enhance the capacity and creativity for future urban energy in the Region and beyond. On behalf of IUTC, I appreciate the valuable contributions of Dr. Brahmanand Mohanty and the staff at the IUTC and UN-Habitat.

Prof. Kwi-Gon Kim

Emeritus Professor at Seoul National University Director, International Urban Training Center

FOREWORD by Dr. Gulelat Kebede

This publication forms part of a series of documents on urban issues, for use as background and training materials for local government training. The publication is the result of the collaboration between UN-Habitat and the International Urban Training Centre (IUTC), Republic of Korea. Two earlier drafts of this document were tested in "Sustainable Urban Energy Courses" at the centre and it is hoped that the tool will be useful for similar trainings in the future, at the IUTC as well as for local government training in the countries of the Asia and Pacific Region. The Sourcebook's wealth of information and tools will serve training participants and urban energy practitioners alike to help them to move their cities to sustainable energy management and to improve access to affordable energy to all. The Sourcebook looks at energy from a holistic approach exploring a multitude of urban sectors that influence energy supply and demand.

Dr. Gulelat Kebede Chief, Training and Capacity Building Branch UN-Habitat

Table of Contents

Introduction	11
01.Energy is all Pervasive	15
1.1 General Trend of Urbanization1.2 How are Asian Cities Growing?1.3 The Energy Needs of Cities	16 25 31
02.Cities hold the Keys to Energy Sustainability	53
 2.1 From Energy Supply to End-use: Huge losses in the Conversion Chain 2.2 From Consumption to Prosumption 2.3 Circular Economy - Closing the Loop 2.4 Sustainable Transport Solutions 2.5 Integrated Urban Planning 2.6 Emerging Technologies for Sustainable Urban Energy 	55 68 77 83 89 95
03.Good Practices	102
 3.1 Urban Planning 3.2 Energy Efficiency 3.3 Renewables (City Initiatives) 3.4 Buildings 3.5 Transport 3.6 Industry and Commerce 3.7 Water 3.8 Waste 3.9 Awareness Campaigns and Consumer Information 3.10 Good Governance 	103 104 106 112 115 120 123 125 129 131
04.Leading for Energy Sustainability— Implementing Successful Policies	133
 4.1 Strategic Planning 4.2 Integrated Planning 4.3 Integrated Energy Planning 4.4 Policy Instruments 4.5 Urban Authorities Leading the Way 4.6 Financing the Sustainable Development 	135 142 144 150 160 164

Annexes

01. How to Measure Eco-efficiency	177
02. Example of Sustainability Indicators in Urban Water Supply	177
03. Urban Energy Sustainability Indicators	178
04. Strategic Planning Process	180
05. Benefits of Demand-led Approach	181
06. Barriers to Effectiveness of Policies	182
07. Computer Models that Help with Energy Planning	183
08. Policy Directions and Possible Actions	185
09. Designing the Future of Transportation in Cities	187
10. Impact of Policies on Sustainability and Cost	188
11. Information and Support	188
12. Strategies to Pick up from Initiatives Around the World	190
13. Training Activities	194

Figures	
Figure 1.1 Tokyo's Eco-Footprint	16
Figure 1.2 Metabolism of Agropolis Compared to Petropolis	18
Figure 1.3 Impacts of Climate Change	20
Figure 1.4 Proportion of Urban Population 1950-2060 (in per cent)	21
Figure 1.5 Urban Environmental Evolution: Developed vs. Developing Countries	22
Figure 1.6 Share of National Gross Domestic Product (GDP) and Population for Selected Cities	23
Figure 1.7 Drivers and Bottlenecks of Urbanization	26
Figure 1.8 The Vicious Circle of Private Motorized Transport	27
Figure 1.9 Urban Density and Transport Related Energy Consumption	28
Figure 1.10 Sources of Greenhouse Gas Emissions 2004	29
Figure 1.11 Developing Asia's Share in Global CO2 Emissions from Energy Consumption	29
Figure 1.12 World Primary Energy Supply 2010	32
Figure 1.13 Primary Energy Supply by Source for Asia (1971 – 2020)	32
Figure 1.14 Annual Per Capita Electricity Consumption	33
Figure 1.15 Per Capita Annual CO2 Emissions from Household Energy Consumption and Transp	ort of
Different Income Groups	34
Figure 1.16 Input and Output of a Building	36
Figure 1.17 Life Cycle Energy Use of Buildings	36
Figure 1.18 Energy Consumption in Different Sectors	38
Figure 1.19 Projection of Energy for Buildings by Region - 2003-2030	38
Figure 1.20 Urban Heat Islands	39
Figure 1.21 World Transport Energy Use by Mode 1971 – 2006	40
Figure 1.22 Car Ownership Rates Projected; Index = 100 in 2000	41
Figure 1.23 Projected Food Demand	44
Figure 1.24 Theoretical Potential for Cropland Expansion	44
Figure 1.25 Per Capita Food Losses and Waste at Consumption and Pre-consumption Stages	45

Figure 1.26 Water for Energy, Energy for Water	46
Figure 1.27 Water Uses for Main Income Groups of Countries	47
Figure 1.28 Water Costs in India (Monthly Costs for 500 Litres of Water per Day in INR)	48
Figure 1.29 Energy Consumption per Sector in Selected Asian Cities	49
Figure 1.30 Municipal Waste in kg/Inhabitant/Year	52
Figure 2.1 The Energy Conversion Chain from Supply to End-use	55
Figure 2.2 Example of Losses in the Energy Conversion Process	56
Figure 2.3 Achieving Factor 4 with Compact Fluorescent Lamps (CFLs)	57
Figure 2.4 Energy Pyramid - Example of CFLs	59
Figure 2.5 Energy Pyramid for Buildings	61
Figure 2.6 Bioclimatic Architecture	63
Figure 2.7. Water Pyramid for Buildings	65
Figure 2.8 Achieving Factor 4 with Low Flush Toilets	66
Figure 2.9 Renewable Energy Share of Global Final Energy Consumption	69
Figure 2.10 Use of Renewable Energy Systems around the World. Solar and Wind	
take the Major Share (excluding hydropower) and Total Energy Resources	70
Figure 2.11 Planning for RETs	71
Figure 2.12 A Decentralized Energy Future for Cities	71
Figure 2.13 Impacts and Interrelations of Sustainable Urban Food Systems	75
Figure 2.14 Linear versus Circular Economy	77
Figure 2.15 Resource Recovery in an Eco-Industrial Park	79
Figure 2.16 Cogeneration vs. Separate Generation	80
Figure 2.17 Integrated Cogeneration and District Energy Network	81
Figure 2.18 Triple Win from Investments in Non-Motorized Transport Road Infrastructure	85
Figure 2.19 Smart Mobility Planning	86
Figure 2.20 Fuel Efficiency per Vehicle Type	87
Figure 2.21 Public transport creates 25 per cent more jobs than the same investment in building	
roads or highways	87
Figure 2.22 The Hammarby Model, Stockholm: An Example of Integrated	
Planning and Management	92
Figure 2.23 From Conventional to Regenerative Cities	93
Figure 2.24 Smart Grid	97

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_18828