UNITED NATIONS RESEARCH INSTITUTE FOR SOCIAL DEVELOPMENT

DP 86

NEW INFORMATION AND COMMUNICATION TECHNOLOGIES, SOCIAL DEVELOPMENT AND CULTURAL CHANGE

by Cees J. Hamelink

UNRISD Discussion Papers are preliminary documents circulated in a limited number of copies to stimulate discussion and critical comment.

June 1997

The United Nations Research Institute for Social Development (UNRISD) is an autonomous agency that engages in multi-disciplinary research on the social dimensions of contemporary problems affecting development. Its work is guided by the conviction that, for effective development policies to be formulated, an understanding of the social and political context is crucial. The Institute attempts to provide governments, development agencies, grassroots organizations and scholars with a better understanding of how development policies and processes of economic, social and environmental change affect different social groups. Working through an extensive network of national research centres, UNRISD aims to promote original research and strengthen research capacity in developing countries.

Current research themes include Crisis, Adjustment and Social Change; Socio-Economic and Political Consequences of the International Trade in Illicit Drugs; Environment, Sustainable Development and Social Change; Integrating Gender into Development Policy; Participation and Changes in Property Relations in Communist and Post-Communist Societies; and Political Violence and Social Movements. UNRISD research projects focused on the 1995 World Summit for Social Development include Rethinking Social Development in the 1990s; Economic Restructuring and Social Policy; Ethnic Diversity and Public Policies; and The Challenge of Rebuilding War-torn Societies.

A list of the Institute's free and priced publications can be obtained from the Reference Centre.

United Nations Research Institute for Social Development Palais des Nations 1211 Geneva 10 Switzerland

(41.22) 798.84.00/798.58.50 Fax (41.22) 740.07.91

Note: The pagination of the electronic version of this paper may vary from the printed version.

ISSN: 1012-6511

Copyright © United Nations Research Institute for Social Development (UNRISD). Short extracts from this publication may be reproduced unaltered without authorization on condition that the source is indicated. For rights of reproduction or translation, application should be made to UNRISD, Palais des Nations, 1211 Geneva 10, Switzerland. UNRISD welcomes such applications.

The designations employed in this publication, which are in conformity with United Nations practice, and the presentation of material herein do not imply the expression of any opinion whatsoever on the part of the United Nations Research Institute for Social Development concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The responsibility for opinions expressed in signed articles, studies and other contributions rests solely with their authors, and publication does not constitute an endorsement by UNRISD of the opinions expressed in them.

Preface

In the late 1990s, we stand on the eve of the total digitalization of all forms of information transmission, except those occurring on a non-mediated, person-toperson level. Sound, text, voice and image will soon be relayed across vast distances in the binary language used by computers; and this will open possibilities for the high-quality transmission of information, in a volume and at a speed almost unimaginable a few years ago. The cost of doing so is also likely to decline dramatically.

Digital technologies are already bringing about profound changes in the economies and societies of countries around the world — speeding the automation of work, facilitating borderless financial transactions, delivering global news and entertainment to vast new audiences. As these technologies permit the fusion of the telecommunications, computer and entertainment industries, they encourage a titanic struggle among some of the largest corporations in the world for control of a consolidated information industry.

The potential of digital technologies to improve the livelihood of people is great. In remote regions, the disadvantage that comes with isolation can be significantly lessened through access to rapid and inexpensive communications. Like-minded people can co-operate across great distance to defend human rights or promote other projects of common interest. Remote sensing can be used to protect the natural environment. The list of possible contributions to human development is long indeed.

Yet there are also obvious dangers in the current highly charged competition to gain control over digital technologies. Already existing trends toward polarization in the world economy can clearly be worsened. Digital advantage can reinforce the possibility that ever smaller groups of people will determine the future use of an ever larger proportion of global resources. Development can be concentrated in regions where the information infrastructure is most developed, to the detriment of areas that are not endowed with the most modern capabilities. And within societies, a growing "knowledge gap" can separate individuals who have access to the latest equipment, and have been trained to use it, from those less well endowed.

In the following pages, Cees Hamelink reviews the background of the current "information revolution", explains its principal technical features and explores possible scenarios for the future. He challenges the frequently held disposition to accept the current direction of change without question. The course of technological development, he reminds us, is always shaped by human beings with particular interests and goals, and a certain (sometimes implicit) view of the future. The latter should be examined openly, not taken for granted.

We have the obligation to think first of the kind of society we want to see in future, and then to influence the design and deployment of new technologies in ways that are most likely to further our goals. In this regard, institutional innovations are as important as scientific or technological breakthroughs in creating new opportunities for human development.

Cees Hamelink is Professor of Communications Science at the University of Amsterdam and past President of the International Association for Mass Communications Research. This essay was commissioned within the joint UNRISD-UNESCO programme on **Culture and Development**. It represents the first contribution to a new UNRISD research programme on **Information Technologies and Social Development**, directed at the Institute by Cynthia Hewitt de Alcántara.

June 1997

Dharam Ghai Director

PREFACE	I
SUMMARY	1
THE DEVELOPMENT OF INFORMATION AND COMMUNICATION TECHNOLOGIES	1
THE NATURE AND ADVANTAGES OF DIGITIZATION	4
THE POLITICAL ECONOMY OF ICTS	5
DIGITAL TECHNOLOGIES AND MORAL ISSUES	8
FUTURE TRENDS	11
DIGITAL TECHNOLOGIES AND DEVELOPMENT	12
DIGITAL DISPARITY	18
CULTURAL GLOBALIZATION	20
ENVIRONMENTAL SUSTAINABILITY	21
DIGITAL TECHNOLOGIES: CHOICES FOR SOCIAL DEVELOPMENT	22
The techno-centric perspective	23
The perspective of discontinuity	23
Utopian versus dystopian perspectives The "utopian" perspective The "dystopian" perspective	26 26 27
SOCIAL AND INSTITUTIONAL FRAMEWORKS	30
AREAS FOR FUTURE ACTION AND RESEARCH	32
REFERENCES	34

Summary

A particularly important aspect of contemporary technological innovation is the quest for new ways to capture, store, process, transport and display information. Although the prevailing expectation is that progress in this field will have a profound impact on societies, expert opinions differ about whether this impact will be positive or negative. In fact it is difficult, if not impossible, to foresee the future social and economic implications of the adoption and proliferation of new information and communication technologies, and this creates a serious problem for policy makers. In the following pages, a case is made for accepting the ambiguities inherent in the current process of technological change and giving concerted attention to specification of the social and institutional changes that will be required to strengthen its potential for social development.

The Development of Information and Communication Technologies

Four stages in the development of technologies to capture, store, process, transport and display information can be identified throughout human history. From the first stage to the fourth, constraints upon the distance, speed, volume and reliability of information handling have progressively been reduced.

In the **first**, and longest, phase (from approximately 35,000 BC to Samuel Morse's first telegraphic transmission in 1838) information was handled through recourse to physical and mechanical power. Media for the transmission of information included fast-running couriers, carrier pigeons, smoke signals, talking drums and semaphores.

In the **second** phase, following the invention of electricity, electro-mechanical power permitted the development of the telegraph, telephone, radio and television.

In the **third** phase, the possibilities of electronics were explored, with the invention of the electronic computer, transistors, semi-conductors (such as silicium) and integrated circuits (or "chips"). The integration of telecommunication and computer technologies began.

Initially, these two technologies were developed and utilized in distinct ways. For almost 80 years, telecommunication technology generated and upgraded techniques for transmission between people-centred artifacts such as telephones, facsimile machines and television systems. Eventually, switching techniques began to make networking possible.

Meanwhile, computer technology evolved from the first electro-mechanical calculator in 1939 to the first — huge — electronic computer (the ENIAC), developed during the Second World War. During the 1950s, the invention of the transistor made it possible to design computers of smaller size, operating at higher speeds, and permitting more versatile programming and reduced energy consumption.

Over the course of the 1950s, computer and telecommunications technologies were integrated, and computer-communications networks were created that linked computers among each other and to terminals. These networks found wide application as a number of technological advances increased the capacity, accessibility and compatibility of both computing and telecommunication facilities. For example, research in the field of telecommunications yielded innovations such as satellites, modems, optical fibres and packet switching. New computer technology permitted the integration of electronic circuits on very small surfaces of silicon (the "chip"), and then created the capacity to place the complete central processing unit of a computer on one chip (the microprocessor).

The first microprocessor was manufactured by Intel in 1971, and only four years later the first computer based upon the microprocessor (the microcomputer) was marketed. This has often been identified as the beginning of the "information age". It certainly announced the sophisticated, inexpensive and flexible personal computer (PC), which began to make the capacity to handle electronic information available to growing numbers of businesses and individuals.

The 1970s and 1980s were largely characterized by further miniaturization of electronic components, exploration of new conducting materials, new techniques for faster electronic switching, expansion of memory capacity and improvements in computer software. New programming languages were developed in order to improve machine-user interaction and to render the problem-solving capacity of computers more sophisticated. The speed of peripheral equipment (all kinds of input and output devices, such as interfaces and printers) was also increased to match the performance of the central processing unit.

The **fourth** phase in the development of information and communication technologies is marked by still further reduction of constraints. Earlier analog modes of information handling are being replaced by more powerful, reliable and flexible digital systems. "The technical foundations of this process lie in the early post-war era, in the innovation of a common language of microelectronics for both computing and, somewhat later, telecommunications" (Schiller and Fregoso, 1991:195). With the development of digital switches and digital transmission facilities in the 1960s, the transition from analog to digital networks began. During the 1980s the process accelerated, and by the late 1980s between one fourth and one half of all central office telephone switches in the advanced industrial market economies had been digitized. It was also in the 1980s that the international

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_21623