

GENERATING EVIDENCE FOR ARTIFICIAL INTELLIGENCE-BASED MEDICAL DEVICES: A FRAMEWORK FOR TRAINING, VALIDATION AND EVALUATION

GENERATING EVIDENCE FOR ARTIFICIAL INTELLIGENCE-BASED MEDICAL DEVICES: A FRAMEWORK FOR TRAINING, VALIDATION AND EVALUATION

Generating evidence for artificial intelligence-based medical devices: a framework for training, validation and evaluation

ISBN 978-92-4-003846-2 (electronic version) ISBN 978-92-4-003847-9 (print version)

© World Health Organization 2021

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike3.0 IGO licence (CC BY-NC-SA3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).

Suggested citation. Generating evidence for artificial intelligence-based medical devices: a framework for training, validation and evaluation. Geneva: World Health Organization;2021. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see https://www.who.int/copyright.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Design and layout by Inis Communication

CONTENTS

Foreword	vi
Acknowledgements Abbreviations and acronyms	
Executive summary	x
1. Introduction	
SECTION I. SOFTWARE DEVELOPMENT	
2. Artificial intelligence in health	
Current evidence in health applications	7
Use-case: AI-SaMD in cervical cancer screening.	
3. Framework for evaluation	
Evaluation components	
Clinical evaluation	
Use-case: Evaluation for cervical cancer diagnosis	
4. Intended use	
Risk classification	
Changes to intended use	
Considerations for global health	
Minimum standards for defining intended use	
Use-case: Defining intended use for AI-SaMD in cervical cancer screening	
5. Model development and training for clinical evaluation	
Designing an AI-based model	
Clinical study design	
Better protocols and reporting of clinical trials	
Minimum standards for model development	
Use-case: Model development and training for AI-SaMDs in cervical cancer screening	
6. Dataset management	
Terminology	
Model training.	
Model validation	
Use-case: Dataset construction in AI-SaMDs for cervical cancer screening	
7. Internal validation and data management	
Data handling	
Ground truth confidence	
Use-case: internal validation for AI-SaMDs in cervical cancer screening	

SECTION II. SOFTWARE VALIDATION AND REPORTING	
8. External validation	
Published case studies	
Minimum standards to be met in external validation	
Use-case: External validation for AI-SaMDs in cervical cancer screening	
9. Data management	41
Minimum standards for data management	
Use-case: Data management for AI-SaMDs in cervical cancer screening	
10. Evidence generation standards	43
International standards.	
Use-case: Applying international standards to AI-SaMDs in cervical cancer screening	
11. Evidence reporting	49
Data Sources	
Reporting standards.	
Minimum standards for reporting technical evidence	
Use-case: Reporting for AI-SaMDs in cervical cancer screening	
SECTION III. DEPLOYMENT AND POST-MARKET SURVEILLANCE	
12. Evaluation of usability	
Guidance for usability evaluation	
Minimum standards for evidence in evaluating usability Use-case: Usability for AI-SaMDs in cervical cancer screening	
13. Evaluation of clinical impact	
Real world performance testing.	
Minimum standards for clinical impact evaluation.	
Use-case: Clinical impact for AI-SaMDs in cervical cancer screening	
14. Evidence on implementation	
Software development	
Product development risk analysis	
Post-market surveillance and monitoring	
Post-market clinical follow-up.	
<i>Minimum standards for post-market clinical follow-up</i> Use-case: Post-market follow-up for AI-SaMDs in cervical cancer screening	
15. Evidence on procurement	
Guidance for procurement	
References	69
Glossary	
Annexes	
Annex 1. Summary of guidance and regulations	
Annex 2. Evidence generation checklists	
Annex 3. Minimum standards summary	

List of figures

Figure 1. Evidence generation and stages of clinical evaluation	21
Figure 2. Phases of development and evaluation for AI-SaMD diagnostic algorithms	
Figure 3. Overview of dataset evaluation components	
Figure 4. Data governance: the process of handling medical image data	
Figure 5. Value hierarchy of data annotation	
Figure 6. Good machine learning practices: total product life cycle approach	
Figure 7. Partially populated sample "Model Facts" label for cervical precancer prediction	
Figure 8. Procurement checklist	

List of tables

Table 1. Randomized trials of AI deep neural networks in endoscopic screening.	
Table 2. Framework for evaluation of an AI-SaMD	14
Table 3. Clinical evaluation methods used to produce desired evidence	15
Table 4. Evaluation components for AI-SaMD in cervical cancer screening.	16
Table 5. IMDRF Risk Categorisation	18
Table 6. IMDRF risk categorisation for AI-SaMD use in cervical cancer screening.	
Table 7. SPIRIT-AI checklist items and explanations	
Table 8. SPIRIT-AI items used in evaluation of AI-SaMD for cervical cancer screening	
Table 9. Dataset naming in Clinical and ML Studies	
Table 10. Datasets in training, validating and implementing AI models for healthcare	
Table 11. Training dataset considerations for cervical cancer screening.	
Table 12. Evidence generation standards: selected guidance.	46
Table 13. Applying SPIRIT-AI checklist to cervical cancer screening	
Table 14. Evaluating PMCF of AI-SaMDs for cervical cancer screening.	
Table 15. Procurement guidance: evidence requirements	

FOREWORD

Artificial intelligence (AI) has potential to optimize the delivery of healthcare and improve outcomes for all. For countries which have yet to achieve universal health coverage, data-driven technology will play a vital role in the next decade. Current AI, machine learning and deep learning applications include the use of clinical decision support tools, diagnostics, and workflow optimisation solutions. AI is also being used to enhance health research and drug development, and in assisting with the deployment of different public health interventions, such as disease surveillance, outbreak response, and health systems management.

AI could greatly benefit low- and middle-income countries, especially in those countries that may have significant gaps in health care delivery and services. AI-based tools and data-driven technology as a whole could help governments extend health care services to underserved populations, improve public health surveillance, and enable healthcare providers to better attend to patients and engage in complex care.

For AI to have a beneficial impact on public health and medicine, ethical considerations must be placed at the centre of the design, development, and deployment of AI technologies for health. The evidence generated from the development and deployment of these devices must be robust and transparent, supporting claims for safety and performance. AI must be generalisable and work to improve outcomes for all populations. Existing biases in healthcare based on race, ethnicity, age, socioeconomic status and gender, that are encoded in data used to train algorithms, must be overcome.

Those same standards for development, deployment and post-market surveillance of AI tools must be applied in the global health context, especially in LMIC populations where governance and regulatory structures for the use of these devices is still evolving. This framework serves as a foundation document and considers minimum requirements for clinical evidence generation in three phases: 1) Software Development, 2) Software Validation and Reporting, and 3) Deployment and Post-Market Surveillance. It uses cervical cancer screening as a use-case to demonstrate the evidence generation considerations. This use-case is appropriate, given the enormous task ahead to eliminate cervical cancer, which remains one of the most common cancers and causes of cancer-related death in women across the globe, even though It is a preventable disease.

As recognised in WHO's Global strategy to accelerate the elimination of cervical cancer as a public health problem,

预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5 23495