

INNOVATIVE DELIVERY SYSTEMS FOR
**PAEDIATRIC
MEDICINES**
TECHNOLOGY LANDSCAPE

Innovative delivery systems for paediatric medicines:
technology landscape

ISBN 978-92-4-000818-2 (electronic version)
ISBN 978-92-4-000819-9 (print version)

© World Health Organization 2020
(acting as the host Organization for the Secretariat of UNITAID)

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; <https://creativecommons.org/licenses/by-nc-sa/3.0/igo>).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (<http://www.wipo.int/amc/en/mediation/rules/>).

Suggested citation. Innovative delivery systems for paediatric medicines: technology landscape. Geneva: World Health Organization; 2020. Licence: [CC BY-NC-SA 3.0 IGO](https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Cataloguing-in-Publication (CIP) data. CIP data are available at <http://apps.who.int/iris>.

Sales, rights and licensing. To purchase WHO publications, see <http://apps.who.int/bookorders>. To submit requests for commercial use and queries on rights and licensing, see <http://www.who.int/about/licensing>.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

INNOVATIVE DELIVERY SYSTEMS FOR PAEDIATRIC MEDICINES: TECHNOLOGY LANDSCAPE

ACKNOWLEDGEMENTS

This report was prepared by Jenny Walsh (Jenny Walsh Consulting Ltd.), Martina Penazzato (WHO), Cherise Scott and Carmen Perez Casas (Unitaid). A general thank you to our colleagues in Unitaid and WHO, and GAP-f Steering Group for their review of the draft landscape, as well as, to the numerous individuals, manufacturers and developers, and partner organizations (Bill & Melinda Gates Foundation) who contributed to the content of this report such as Paul L Domanico (Clinton Health Access Initiative), Melynda Watkins (Clinton Health Access Initiative), Isabelle Andrieux-Meyer (DNDi), Joerg Breitkreutz (University of Duesseldorf), Viviane Klingmann (University of Duesseldorf), Catherine Tuleu (University College London/European Paediatric Formulation Initiative), Fang Liu (Fluid Pharma/University of Hertfordshire), Andrew Owen (University of Liverpool), Hanu Ramachandruni (Medicines for Malaria Venture), Courtney Jarrahian (PATH), Manjari Lal (PATH), Manjar Quintanar-Solares (PATH).

TABLE OF CONTENTS

Acknowledgements	1
Contents	2
Foreword	4
Abbreviations and acronyms	6
Executive summary	7
1. LANDSCAPE OBJECTIVE	9
2. METHODOLOGY	9
3. PUBLIC HEALTH CHALLENGES IN PAEDIATRIC TREATMENT AND PREVENTION	10
4. MARKET BARRIERS TO PAEDIATRIC MEDICINE DEVELOPMENT	10
4.1 Technical challenges	10
4.2 Paediatric clinical studies	11
4.3 Cost, regulations and incentives	12
4.4 Product introduction and roll out	12
5. TECHNOLOGY LANDSCAPE	13
5.1 Oral route dosage forms and technologies	18
5.1.1 Dispersible tablets	18
5.1.2 Oro-dispersible tablets	21
5.1.3 Multi-particulates	23
5.1.4 Mini tablets	27
5.1.5 Oral films	30
5.1.6 Novel oral delivery systems for biologic drugs	32
5.1.7 Taste-masking technologies	32
5.1.8 Long-acting technologies for the oral route	35
5.2 Rectal route dosage forms	36
5.2.1 Suppositories	36
5.3 Parenteral route dosage forms	38
5.3.1 Advantages and Disadvantages	39
5.3.2 Acceptability of parenteral products	39
5.3.3 Long-acting technologies for the parenteral route	39
5.3.4 Needle-free injections	42
5.4 Transdermal dosage forms	43
5.4.1 Microneedles	43
5.5 Examples of supportive technologies	46
5.5.1 Technologies for enhancing the bioavailability of poorly soluble drugs	46
5.5.2 3D Printing	48

6. KEY CONSIDERATIONS FOR APPLICATION OF INNOVATIVE DELIVERY SYSTEMS	49
6.1 Near-term dosage form and technology opportunities	52
6.2 Medium to long-term dosage form and technology opportunities	53
7. CONCLUSION	55

LIST OF TABLES

TABLE 1 Examples of commercially available co-processed excipients ¹ for DTs	20
TABLE 2 Examples of marketed dispersible tablet products indicated for use in children ^a	21
TABLE 3 Examples of commercially available oro-dispersible tablet technologies	22
TABLE 4 Examples of marketed oro-dispersible products indicated for use in children ^a	23
TABLE 5 Examples of commercially available multi-particulate technologies	26
TABLE 6 Examples of marketed multi-particulate products indicated for use in children ^a	27
TABLE 7 Examples of marketed mini tablet products indicated for use in children ^a	29
TABLE 8 Examples of commercially available oral film technologies	31
TABLE 9 Examples of marketed oral film products indicated for children and adolescents ^a	32
TABLE 10 Examples of commercially available taste-masking technologies	34
TABLE 12 Examples of commercially available microneedle technologies	38
TABLE 13 Summary of key considerations of potential paediatric dosage forms for limited-resource settings	50

FOREWORD

There has been tremendous progress towards reducing morbidity and mortality from the major infectious disease killers including HIV, tuberculosis, and malaria. This is due in part to the introduction of innovative treatments and diagnostic tools which have contributed to greater efficiencies of care, moving us closer to our targets for eliminating these diseases as a public health problem. However, significant gaps in the global response remain and progress continues to be slower in key and vulnerable populations, including infants and children. Still over 5 million children are dying before reaching their fifth birthday, mostly in low and middle-income countries, and mostly from conditions that are readily preventable or treatable.

Medicines recommended for the prevention or treatment of diseases in babies and children are frequently legacy medicines which may not be the most effective, and/ or are delivered as non-palatable complicated dosage forms eventually leading to poor adherence and inadequate dosing of the prescribed treatment. Many challenges affect the investigation, development and access of appropriate medicines for children including weak market incentives with limited prospectus of market revenue; logistical, operational and technical barriers; and complex evaluation and regulatory pathways.

Over the last years, several global stakeholders have worked towards accelerating access to optimal paediatric formulations, whose availability historically have lagged up to 10 years behind that of the adult treatments. The World Health Organization (WHO), at the heart of such collaborative efforts, organized the first Paediatric Antiretroviral Drug Optimization (PADO) meeting in 2013 in Dakar to examine gaps in HIV-paediatric formulations to ensure best recommendations on the use of antiretroviral drugs could be implemented for treating and preventing HIV infection in infants and children, as well as to support the investigations and development of more simplified, less toxic drug regimens. Since then, paediatric drug optimization has expanded to other disease areas promoting prioritization and adaptation of key drugs and regimens for tuberculosis and hepatitis. The establishment of the Global Accelerator for Paediatric Formulations (GAP-f), launched in 2018 and now formally recognised as a WHO-led network, provides an opportunity to reinforce and innovate the mechanism needed to ensure that priority optimal paediatric formulations are investigated, developed and made available to children in a timely manner. Within malaria, revisions were made to the co-payment structure of Affordable Medicines Facility – Malaria (AMFm) to favour paediatric packs for therapies in March 2011. Since the revisions, measures have been put in place for managing orders to give preference to child-packs – which had an immediate impact on uptake of these medicines for children in affected regions. In addition, key research and development efforts have played a major role in bringing in more competition with the entry of multiple generic products pushing down prices for malaria medicines, both for adults and children.

In recent years, various improved child-friendly formulations have come to market, as a result of a multi-stakeholder approach, for critical medicines for HIV (e.g., ritonavir-boosted lopinavir oral pellets), malaria (e.g., dispersible sulfadoxine-pyrimethamine + amodiaquine) and tuberculosis (e.g., dispersible fixed dosed combinations for first-line treatment). These more effective formulations and regimens are lessening the burden for

health providers and caregivers administering the medicines and offering more adapted and acceptable treatment options for children taking the medicines. Furthermore, they are demonstrating greater tolerability in young children and infants and leading to better health outcomes. Unitaid has been at the forefront of these efforts with over US\$1 billion direct investments since its inception put towards improving and accelerating therapeutic innovations for children affected by HIV, tuberculosis, and malaria in low- and middle-income countries.

Much more remains to be done. Innovative delivery tools hold promise in facilitating cost-effective fit-for-purpose products that meet the unique needs of children in low-resource settings around the world. These tools could further simplify administration, improve adherence and ultimately lead to better health outcomes in children. This potential needs to be fully tapped starting with thorough landscaping to identify opportunities to accelerate research and development for the maximum impact. We cannot let infants and children be left behind and suffer and die from treatable conditions; we cannot accept the status quo and need to ensure that the most vulnerable, the small children, are at the forefront of our efforts in scientific and technical innovation.

Signatures

Philippe Duneton
Executive Director *a.i.*, *Unitaid*

Soumya Swaminathan
Chief Scientist, *WHO*

预览已结束，完整报告链接和二维码如下：

https://www.yunbaogao.cn/report/index/report?reportId=5_24572

