

Landscape of diagnostics against antibacterial resistance, gaps and priorities ISBN 978-92-4-151628-0

© World Health Organization 2019

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.

Suggested citation. Landscape of diagnostics against antibacterial resistance, gaps and priorities. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Acknowledgements

This landscape with lists of diagnostic gaps and R&D priorities for diagnostic development was prepared by Maurine M. Murtagh, The Murtagh Group, LLC, with input from WHO. The project was coordinated by Dr Francis Moussy, WHO. An advisory group appointed by WHO first helped to define the scope and methodology to be used for the landscape. An initial draft of the landscape was developed and subsequently reviewed both internally by WHO staff and externally by experts. Twenty external experts provided reviews. The draft landscape was also presented and discussed during a technical consultation held on 27-28 March 2019 in Geneva, Switzerland. Comments from both the reviews and the technical consultation were used to finalize the landscape, including the gaps and priorities.

The contributions of the following individuals are gratefully acknowledged:

Advisory group

- Till Bachmann, University of Edinburgh, Edinburgh, United Kingdom
- Cassandra Kelly, FIND, Geneva, Switzerland
- Francis Ndowa, Harare, Zimbabwe
- Pascale Ondoa, African Society for Laboratory Medicine, Addis Ababa, Ethiopia
- Kevin Outterson, CARB-X, Boston, USA
- Teri Roberts, Médecins Sans Frontières, Geneva, Switzerland
- Kamini Walia, Indian Council of Medicine Research, New Delhi, India

Participants in the technical consultation held on 27–28 March 2019

Internal and external reviewers

Funding provided by the Wellcome Trust is gratefully acknowledged.

Table of Contents

Glossary	6
Executive Summary	9
Background	9
Scope	9
The question and the findings	9
Diagnostic gaps	10
R&D priorities	11
Introduction	12
Methods	14
Organization of the landscape report	15
Laboratory systems in LMICs	16
IVDs for identifying bacterial pathogens	18
Phenotypic ID methods	18
Bacterial cultivation	18
Microscopic morphology	18
Macroscopic morphology	19
Biochemical tests	19
Automated or semi-automated phenotypic testing methods	19
Automated Gram staining	19
Automated specimen processing and inoculation of media	21
Automated culture systems	22
Manual bacterial ID systems	24
Automated bacterial ID systems	26
Conclusion	27
Immunoassay methods of identifying bacterial pathogens	27
Molecular methods of identifying bacterial pathogens	29
Hybridization methods	29
Amplification methods	30
Commercially available platforms using molecular amplification technologies for detecting bacterial pathogens	32
Pipeline molecular systems for identifying pathogens	48
Sequencing methods	49
Other methods of identifying bacterial pathogens	51
Other MS methods	53
Conclusion	53
IVDs for AST and antibiotic resistance testing of bacterial pathogens	55
Phenotypic methods of AST	55
Classical methods of AST	55
Automated combined ID and AST systems	58
Novel AST methods	61
Imaging-based ID/AST or AST only	61
Nonimaging AST	63

Pipeline technologies for AST	64
Conclusion	65
Nonphenotypic methods of identifying pathogens and detecting antibiotic resistance	65
Molecular platforms for identifying pathogens and characterizing bacterial resistance from blood culture	66
Molecular platforms for identifying pathogens and characterizing bacterial resistance from whole blood	
and other sample types	76
Nonphenotypic methods of detecting antibiotic resistance	80
Molecular methods of detecting antibiotic resistance	80
Immunoassays and other methods for detecting antibacterial resistance	82
Pipeline technologies for identifying pathogens and/or detecting antibiotic resistance	84
Conclusion	89
Host response assays	90
Qualitative or semi-quantitative tests	90
Quantitative tests	90
Conclusion	97
Discussion	98
Priority diagnostics for R&D	101
Annex I – ABR prioritization	103
Appendix II – Diagnostic platforms for all levels of healthcare system	104
Annex III - Diagnostic platforms suitable for Level I/Level II	118
References	124

Glossary

ADD	.41 1	DOT	1 (1.11)
ABR	antibacterial resistance	DST	drug susceptibility testing
AFB	acid-fast bacilli	DTR	discrete test region
AMR	antimicrobial resistance	DTS	direct tube sampling
ARI ASO	acute respiratory infection antistreptolysin O	ECDC	European Centre for Disease Prevention and Control
AST	antimicrobial susceptibility testing	E. coli	Escherichia coli
ВС	blood culture	EDL	WHO Model List of Essential In Vitro Diagnostics
BCID	blood culture identification	E. faecalis	Enterococcus faecalis
BSI	bloodstream infection	EIEC	enteroinvasive Escherichia coli
CAI	community-acquired infection	ELISA	enzyme-linked immunosorbent assay
CAP	community-acquired pneumonia	ESBL	extended spectrum beta-lactamase
C_2CA	circle-to-circle amplification	ESI	electron spray ionization
CDAD	Clostridium difficile-associated	ET	fluorescent energy transfer
	disease	ETEC	enterotoxigenic Escherichia coli
CDC	US Centers for Disease Control and Prevention	ETGA	Enzymatic Template Generation and
CDI		EIGA	Amplification
CDI	Clostridium difficile (or C. diff) infection	EUCAST	European Committee on Antimicrobial
C. difficile	Clostridium difficile	ED 4	Susceptibility Testing
cDNA	complementary DNA molecule	FDA	US Food and Drug Administration
CE	Conformité Européenne	FFPE	formalin-fixed, paraffin-embedded
CFU	culture-forming unit	FISH	fluorescence in situ hybridization
cHDA	circulator helicase-dependent	FLLS	forward laser light scattering
	amplification	GARDP	Global Antibiotic Research and
CLIA	Clinical Laboratory Improvement	CDC	Development Partnership
	Amendments	GBS	Group B Streptococcus
CLSI	Clinical and Laboratory Standards Institute	GC	Neisseria gonorrhoeae, also gas chromatography
CMV	cytomegalovirus	gDNA	genomic DNA
CNS	coagulase-negative staphylococci	GEL	gel electrofiltration
CO_2	carbon dioxide	GES	GES-type beta-lactamase
CPE	carbapenemase-producing	GI	gastrointestinal
	Enterobacteriaeceae	GLASS	Global Antimicrobial Surveillance System
CPO	carbapenemase-producing organism	HAI	hospital- and/or health-centre-acquired
CRE	carbapenem-resistant Enterobacteriaceae		infections
CRP	C-reactive protein	HbA1c	glycated haemoglobin
CSF	cerebrospinal fluid	HBV	hepatitis B virus
CT	Chlamydia trachomatis	HCV	hepatitis C virus
CTX-M	CTX-M beta-lactamases	HDA	helicase-dependent amplification
DNA	deoxyribonucleic acid	HIC	high-income country
dPCR	digital PCR	HIV-1	human immunodeficiency virus-1
			·

6 Glossary

HPV	human papilloma virus	MLSb	macrolide-lincosamide-streptogramin B
HSV 1	herpes simplex virus 1 (oral herpes)		resistance
HSV 2	herpes simplex virus 2 (genital herpes)	MREJ	mec right extremity junction
ICR	inducible clindamycin resistance	mRNA	messenger RNA
ICU	intensive care unit	MRSA	methicillin-resistant <i>Staphylococcus</i> aureus
ID	identification	MS	mass spectrometry
IgG	immunoglobulin G	MSSA	methicillin-susceptible <i>Staphylococcus</i>
IgM	immunoglobulin M	WISSA	aureus
IL-6	interleukin-6	MTB	Mycobacterium tuberculosis
IMBI	Inhibition Magnetic Binding	MTB complex	Mycobacterium tuberculosis complex
IMDA	Immunoassay	MxA	myxovirus resistance A
IMDA	isothermal multiple displacement amplification	m/z	mass-to-charge
IMP	IMP-type metallo-beta-lactamase	NAAT	nucleic acid amplification test
iNAAT	isothermal nucleic acid amplification test	NASBA	nucleic acid sequence-based amplification
IP-10	interferon gamma-induced protein-10	NDM	New Delhi metallo-beta-lactamase
IVDs	in vitro diagnostics	NEAR	nicking enzyme amplification reaction
KPC	Klebsiella pneumoniae carbapenemase	NG	Neisseria gonorrhoeae or N. gonorrhoeae
K. pneumoniae	Klebsiella pneumoniae	NGS	next-generation sequencing
LAMP	loop-mediated isothermal amplification	nm	nanometre
LATE	late-linear-after-the-exponential	nvCT	new variant of CT
LDT	laboratory-developed test	NTM	nontuberculous mycobacteria
LED	light-emitting diode	OXA	OXA-type carbapenem
LFIA	lateral flow immunoassay	P. aeruginosa	Pseudomonas aeruginosa
LIMS	laboratory information and management	PaLoc	pathogenicity locus
LIS	system	PBP	penicillin binding protein
	laboratory Information system	PCR	polymerase chain reaction
LMICs	low- and middle-income countries	PCT	procalcitonin
LOD	limit of detection	PNA	peptide nucleic acid
LPA	line probe assay	POC	point of care
LPS	lipopolysaccharide	PT-INR	prothrombin time-international
LRTI	lower respiratory tract infection	1 11111	normalized ratio

预览已结束,完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5_25093

