Whole genome sequencing for foodborne disease surveillance Landscape paper



# Whole genome sequencing for foodborne disease surveillance Landscape paper



Whole genome sequencing for foodborne disease surveillance: landscape paper

ISBN 978-92-4-151386-9

#### © World Health Organization 2018

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.

**Suggested citation.** Whole genome sequencing for foodborne disease surveillance: landscape paper. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

**Sales, rights and licensing.** To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.

**Third-party materials.** If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

**General disclaimers**. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Printed in Switzerland

# Contents

| Acronyms and abbreviations                                                                              | v         |
|---------------------------------------------------------------------------------------------------------|-----------|
| Acknowledgements                                                                                        | vi        |
| Introduction                                                                                            | viii      |
| 1. Whole genome sequencing: the future of FBD surveillance and outbreak response                        | 1         |
| 1.1 Public health surveillance                                                                          | 1         |
| 1.1.1 Subtyping of pathogens for surveillance and outbreak investigation                                | 1         |
| 1.1.2 Comparison of WGS with traditional methods for real-time surveillance                             | 2         |
| 1.1.3 WGS detects outbreaks taking place under the surveillance radar                                   | 2         |
| 1.2 Additional information from phylogenetic analysis                                                   | 3         |
| 1.2.1 Outbreak investigation and source-finding                                                         | 3         |
| 1.2.2 Source attribution                                                                                | 3         |
| 1.3 Predicting emerging threats                                                                         | 4         |
| 1.4 Monitoring antimicrobial resistance in foodborne pathogens                                          | 4         |
| 1.5 References                                                                                          | 5         |
| 2. WGS as a tool to strengthen integrated surveillance                                                  | 7         |
| 2.1 Overview of integrated foodborne disease surveillance                                               | 7         |
| 2.2 High accuracy matching of pathogens across the animal, food, environmental and human                | 1         |
| sectors                                                                                                 | 7         |
| 2.3 Coordinating the use of WGS across public health, food safety and regulatory agencies               | 9         |
| 2.3.1 Organizational and cultural aspects                                                               | 9         |
| 2.3.2 Technical and scientific aspects                                                                  | 10        |
| 2.4 References                                                                                          | 12        |
| 3. Implementing WGS as a tool for public health in low- and middle- income countrie the main challenges | es:<br>13 |
| 3.1 Infrastructure                                                                                      | 13        |
| 3.2 Costs                                                                                               | 14        |
| 3.2.1 Overall cost                                                                                      | 14        |
| 3.2.2 Consumables                                                                                       | 14        |
| 3.2.3 Personnel                                                                                         | 15        |
| 3.3 Bioinformatics                                                                                      | 15        |
|                                                                                                         |           |

iii

| 3.4 Data sharing                                                                  | 16 |
|-----------------------------------------------------------------------------------|----|
| 3.4.1 Harmonization                                                               | 16 |
| 3.4.2 Data ownership                                                              | 17 |
| 3.4.3 Metadata and ontology                                                       | 18 |
| 3.4.4 Data analysis                                                               | 18 |
| 3.4.5 Trade implications                                                          | 19 |
| 3.5 References                                                                    | 20 |
| 4. The current state of WGS technology and the supporting bioinformatic tools     | 21 |
| 4.1 WGS instrumentation and capacity                                              | 21 |
| 4.1.1 Short-read platforms                                                        | 21 |
| 4.1.2 Long-read platforms                                                         | 23 |
| 4.1.3 Summary                                                                     | 24 |
| 4.2. Bioinformatics of WGS data                                                   | 25 |
| 4.2.1 Quality assurance, quality control and read preprocessing                   | 26 |
| 4.2.2 Species identification                                                      | 27 |
| 4.2.3 In silico typing and phenotype prediction                                   | 27 |
| 4.2.4 Whole genome molecular typing, allele calling and phylogenetic inference    | 28 |
| 4.2.5 Examples of bioinformatic tools                                             | 30 |
| 4.3 References                                                                    | 32 |
| 5. Use of WGS information by health professionals and risk managers: the need for |    |
| cultural change                                                                   | 35 |
| 5.1 The role of microbiologists, bioinformaticians and epidemiologists            | 35 |
| 5.1.1 Molecular microbiologist                                                    | 35 |
| 5.1.2 Bioinformatician                                                            | 36 |
| 5.1.3 Epidemiologist                                                              | 36 |
| 5.2 Integration of WGS, epidemiological, and clinical data                        | 37 |
| 5.3 Standardization of data and information and controlled vocabulary             | 38 |
| 5.4 New paradigms of practice arising from developments in pathogen genomics      | 39 |
| 5.5 References                                                                    | 42 |

iv

# Acronyms and abbreviations

| AMR        | antimicrobial resistance                                                |
|------------|-------------------------------------------------------------------------|
| API        | application program interface                                           |
| CFSAN      | Center for Food Safety and Applied Nutrition (USA)                      |
| CGE        | Center for Genomic Epidemiology, Denmark Technical University (Denmark) |
| CLI        | command line interface                                                  |
| EUCAST     | European Committee on Antimicrobial Susceptibility Testing              |
| FAO        | Food and Agriculture Organization of the United Nations                 |
| FBD        | foodborne disease                                                       |
| FDA        | Food and Drug Administration (USA)                                      |
| Gb         | gigabase                                                                |
| GO         | gene ontology                                                           |
| GUI        | graphical user interface                                                |
| HUS        | haemolytic uraemic syndrome                                             |
| IHR (2005) | International Health Regulations (2005)                                 |
| INSDC      | International Nucleotide Sequence Database Collaboration                |
| IRIDA      | Integrated Rapid Infectious Disease Analysis                            |
| IT         | information technology                                                  |
| kb         | kilobase                                                                |
| LIMS       | laboratory information management system                                |
| MLST       | multilocus sequence typing                                              |
| MLVA       | multilocus variable-number tandem-repeat analysis                       |
| NCBI       | National Center for Biotechnology Information (USA)                     |
| NGS        | next generation sequencing                                              |
| OIE        | World Organisation for Animal Health                                    |
| ONT        | Oxford Nanopore Technologies                                            |
| PacBio     | Pacific Biosciences                                                     |
| PFGE       | pulsed-field gel electrophoresis                                        |
| QA         | quality assurance                                                       |
| QC         | quality control                                                         |
| SBL        | sequencing-by-ligation                                                  |
| SBS        | sequencing-by-synthesis                                                 |
| SENASICA   | Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria       |
| SMRT       | single-molecule real-time sequencing                                    |
| SNP        | single nucleotide polymorphism                                          |
| SNVPhyl    | single nucleotide variant phylogenomics                                 |
| SRA        | sequence read archive                                                   |
| STEC       | Shiga-toxin-producing Escherichia coli                                  |
| Stx        | Shiga toxin                                                             |
| WGS        | whole genome sequencing                                                 |
| WHO        | World Health Organization                                               |

# Acknowledgements

The World Health Organization (WHO) expresses sincere thanks to all the authors and other reviewers of this paper.

### Contributing authors

David Aanensen, Imperial College London, London, England; Clara Amid, European Bioinformatics Institute European Molecular Biology Laboratory, Cambridge, England; Stephen Baker, Oxford University Clinical Research Unit, Ho Chi Minh, Viet Nam; Claudio Bandi, Università degli Studi di Milano, Milan, Italy; Eric W. Brown, United States Food and Drug Administration (FDA), Silver Spring, MD, United States of America (USA); Josefina Campos, Instituto Nacional de Enfermedades Infecciosas, Buenos Aires, Argentina; Guy Cochrane, European Bioinformatics Institute European Molecular Biology Laboratory, Cambridge, England; Francesco Comandatore, Università degli Studi di Milano, Milan, Italy; Tim Dallman, Public Health England, London, England; Xiangyu Deng, University of Georgia, Griffin, GA, USA; Gordon Dougan, Department of Medicine, University of Cambridge, Cambridge, England; Rita Finley, Public Health Agency of Canada, Guelph, Canada; Alejandra García Molina, SENASICA, Mexico City, Mexico; Peter Gerner-Smidt, Centers for Disease Control and Prevention, Atlanta, GA, USA; Sara Goodwin, Cold Spring Harbor, NY, USA; Tine Hald, Technical University of Denmark, Copenhagen, Denmark; Zhaila Isaura Santana Hernández, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Mexico City, Mexico; Kirsty Hope, New South Wales Ministry of Health, Canberra, Australia; William Hsiao, British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada; Claire Jenkins, Public Health England, London, England; Katherine Littler, Wellcome Trust, London, England; Ole Lund, Technical University of Denmark, Copenhagen, Denmark; Megge Miller, South Australian Department for Health and Ageing, Adelaide, Australia; Alejandra García Molina, SENASICA, Mexico City, Mexico; Jacob Moran-Gilad, Ben Gurion University of the Negev, Beer-Sheva and Israeli Ministry of Health, Jerusalem, Israel; Nicola Mulder, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Celine Nadon, Public Health Agency of Canada, Ottawa, Canada; Eric Ng'eno, Kenya Medical Research Institute, Nairobi, Kenya; Collins Owuor, Kenya Medical Research Institute and Wellcome Trust Research Institute,

### 预览已结束, 完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5 25903

