

Recycling used lead-acid batteries: health considerations

World Health
Organization

Recycling used lead-acid batteries: health considerations

Recycling used lead-acid batteries: health considerations

ISBN 978-92-4-151285-5

© World Health Organization 2017

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; <https://creativecommons.org/licenses/by-nc-sa/3.0/igo>).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.

Suggested citation. Recycling used lead acid batteries: health considerations. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at <http://apps.who.int/iris>.

Sales, rights and licensing. To purchase WHO publications, see <http://apps.who.int/bookorders>. To submit requests for commercial use and queries on rights and licensing, see <http://www.who.int/about/licensing>.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimer. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Printed in Switzerland

Contents

Acknowledgments	1
1. Introduction	2
1.1. Purpose and scope of the document	3
2. How lead exposure occurs during recycling and disposal	4
2.1. Components of a lead-acid battery	4
2.2. Steps in the recycling process	5
2.3. Lead release and exposure during recycling	6
2.3.1. Informal lead recycling	8
2.4. Other chemicals released during recycling	9
2.5. Studies of lead exposure from recycling lead-acid batteries	9
2.5.1. Senegal	10
2.5.2. Dominican Republic	11
2.5.3. Viet Nam	12
3. Main routes of lead exposure and health effects	14
3.1. Routes of exposure to lead	14
3.2. Toxic effects of lead	15
3.2.1. Gastrointestinal effects	15
3.2.2. Neurological effects	16
3.2.3. Cardiovascular	17
3.2.4. Renal	17
3.2.5. Endocrine	18
3.2.6. Reproductive system and pregnancy	18
3.2.7. Haematological	18
3.3. Toxic effects in relation to blood lead concentrations	18
4. The public health impact of lead exposure	21
5. Economic impact of lead exposure in countries	22
6. Assessment of lead exposure	23
6.1. Blood lead measurements	23
6.2. Taking an exposure history	25
6.3. Environmental assessment	26
6.3.1. Soil and dust	26
6.3.2. Air	26
6.3.3. Food and water	27

7. Control measures	29
7.1. Battery collection, storage and transportation	29
7.2. Battery recycling	29
7.2.1. Personal protective equipment	31
7.3. Informal recycling	31
7.4. The problem of legacy pollution	32
7.5. Policy measures	32
8. Conclusions and way forward	33
9. References	34

Acknowledgments

This document was written by Bernice Schaddelee-Scholten (consultant) and Joanna Tempowski of the Department of Public Health, Environmental and Social Determinants of Health at the World Health Organization (WHO), Geneva, Switzerland. The first draft was prepared for a workshop organised by the United Nations Environment Programme on Safe Management of Used Lead Acid Batteries, held in Osaka, Japan, on 26-27 October 2015. Meeting participants are thanked for their comments on the draft.

Further comments were provided by: Jack Caravanos, New York University, New York, USA; Edith Clarke, Occupational & Environmental Health Unit, Ghana Health Service, Accra, Ghana; Bret Ericson, Pure Earth, New York, USA; Perry Gottesfeld, Occupational Knowledge International, USA; Amalia Laborde, Centro de Información y Asesoramiento Toxicológico, Montevideo, Uruguay; Philip Landrigan, Icahn School of Medicine at Mount Sinai, New York, USA; Byung-Kook Lee, Institute of Environmental & Occupational Medicine, Soonchunhyang University, Republic of Korea; Angela Mathee, Environment and Health Research Unit, Medical Research Council, Johannesburg, South Africa; and Lynn Panganiban, Department of Pharmacology & Toxicology of the College of Medicine, Manila, the Philippines.

From WHO, comments were provided by: Hamed Bakir, Mohamed Elmi, Soren Madsen, Mazen Malkawi and Raki Zghondi, Eastern Mediterranean Regional Centre for Environmental Health Activities, Amman, Jordan; and Dorota Jarosińska, WHO European Centre for Environment and Health, Bonn, Germany.

Edited by Philip Jenkins.

Photo credits: Larry C. Price/ The Pulitzer Center on Crisis Reporting (recycling in Indonesia: front cover and pages 9, 25 and 26); Perry Gottesfeld/Occupational Knowledge International (recycling in Viet Nam pages 12 and 19).

Design and layout by Paprika (Annecy, France).

1. Introduction

Around 85% of the total global consumption of lead is for the production of lead-acid batteries (ILA, 2017)

Approximately 85% of the total global consumption of lead is for the production of lead-acid batteries (ILA, 2017). This represents a fast-growing market, especially in Asia (Future Market Insights, 2014). The main uses of these batteries are in motorized vehicles, for storage of energy generated by photovoltaic cells and wind turbines, and for back-up power supplies (for both the consumer market and for critical systems such as telecommunications and hospitals). In developing countries where power supplies are unreliable, lead-acid batteries are used domestically for lighting and electrical appliances (UNEP, 2004). The growth in the use of renewable energy sources and the concomitant need for storage batteries, as well as the increasing demand for motor vehicles as countries undergo economic development, mean that the demand for lead-acid batteries will continue to increase. This is reflected in the increased global demand for refined lead metal, which was estimated at 10.83 million tonnes in 2016 (International Metals Study Groups, 2016). The demand is being met by increases in both primary lead production from mines and recycling. Indeed, currently over half of the global production of lead is from lead recycling (ILA, 2015).

The manufacturing and recycling of lead-acid batteries is practised worldwide in both regulated industries and unregulated, informal establishments (UNEP, 2003). Lead recycling is an important source of environmental contamination and human exposure in many countries (UNEP, 2010; van der Kuijp et al., 2013). This is because it is frequently carried out without the necessary

预览已结束，完整报告链接和二维码如下：

https://www.yunbaogao.cn/report/index/report?reportId=5_26600

