

FAO/WHO Expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implica tions Meeting report

FAO/WHO Expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications Meeting report

> Food and Agriculture Organization of the United Nations and World Health Organization *Rome 2010*

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations or of the World Health Organization concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO or WHO in preference to others of a similar nature that are not mentioned.

All reasonable precautions have been taken by the World Health Organization and the Food and Agriculture Organization of the United Nations to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied.

The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization or the Food and Agriculture Organization of the United Nations be liable for damages arising from its use. This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of FAO or of WHO.

Recommended citation: FAO/WHO [Food and Agriculture Organization of the United Nations/World Health Organization]. 2010. FAO/WHO Expert Meeting on the Application of Nanotechnologies in the Food and Agriculture Sectors: Potential Food Safety Implications: Meeting Report. Rome. 130 pp.

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Electronic Publishing Policy and Support Branch, Communication Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy, or by e-mail to copyright@fao.org or to WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland, by facsimile to +41 22 7914806, or by e-mail to permissions@who.int.

ISBN 978-92-4-156393-2 (WHO) (NLM classification: QT 36.5) ISBN 978-92-5-106495-5 (FAO)

© FAO and WHO, 2010

For further information on the joint FAO/WHO activities on nanotechnologies, please contact:

Nutrition and Consumer Protection Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla, 00153 Rome, Italy Fax: +39 06 57054593 E-mail: proscad@fao.org Web site: http://www.fao.org/ag/agn/agns or Department of Food Safety and Zoonoses World Health Organization 20, Avenue Appia, 1211 Geneva 27, Switzerland Fax: +41 22 7914807 E-mail: foodsafety@who.int Web site: http://www.who.int/foodsafety

Contents

vii	Acknowledgements
-----	------------------

- viii Meeting participants
- xii Declaration of interests
- xiii Abbreviations and acronyms
- xv Working definitions
- xvii Executive summary
- xvii Background
- xviii Use of nanotechnology
- xix Assessment of human health risks
- xx Stakeholder confidence and dialogue

3 Introduction

- 3 Background
- 3 Market drivers and scale of commercial activity
- 5 Meeting background
- 6 Scope and objectives
- 6 Scope

6

- Objectives
- 7 Expected outputs
- 8 Existing and projected applications of nanotechnology in the food and agriculture sectors
- 8 Scope and objectives
- 9 Introduction
- 10 Processed nanostructures in food
- 11 Nanodelivery systems based on encapsulation technology
- 12 Nanomaterials relevant to food applications
- 13 Inorganic nanomaterials
- 14 Surface functionalized nanomaterials
- 14 Organic nanomaterials

15	Nano-enabled food contact materials (FCMs) and
	packaging
15	Nanoparticle reinforced materials
17	Intelligent packaging concepts based on nanosensors
18	Use of nanotechnologies in the agriculture sector
18	Animal feed
18	Agrochemicals
19	Future perspectives
19	Introduction
20	Carbon nanotube–polymer composites
20	Polymer nanocomposite films
21	Polymer composites with nano-encapsulated substances
21	Dirt repellent coatings at nanoscale
21	Nanomaterials for next generation packaging
	displays
21	Improvement of the performance of biobased polymers
22	Summary
24	Assessment of human health risks associated with
	the use of nanotechnologies and nanomaterials
	in the food and agriculture sectors
24	Introduction
25	Problem identification
26	Risk assessment: Hazard identification
27	Techniques characterizing physicochemical properties
28	Interaction of nanomaterials with biology
30	Toxicological effects
31	In vitro and in vivo testing
33	Hazard characterization
33	Dose–response considerations
34	Species differences in toxicokinetics and
	toxicodynamics specific to nanoparticles
34	Epidemiological studies
34	Exposure assessment
37	Risk characterization
37	Applicability of the risk assessment paradigm for
	nanoparticles
37	Special tools or approaches required for nanoparticle
	risk assessment
37	Consideration of a tiered risk assessment approach
38	Product life cycle considerations
39	Animal health considerations including food of
	animal origin and residues in animal tissues

40	Future needs for the assessment and prevention of human
	and animal health risks
40	Databases
40	Exposure assessment
40	Hazard identification and characterization
41	Summary
41	Knowledge needs
41	Resource needs
42	Process needs
43	Development of transparent and constructive dialogues
	among stakeholders – Stakeholder confidence
43	Stakeholder engagement
43	Risk communication in risk analysis frameworks
47	Models of Engaging Stakeholders
48	Upstream input into research strategy and
	prioritization of R&D funding/risk assessment
49	Transparency
50	Interest and concerns of unaffiliated
	public citizens
50	Consumer perception studies
53	Stakeholder organizations
54	Environmental and consumer NGOs
55	Analysis of the key issues
56	Industries
56	Governments
57	Science, science policy, think tanks, and professional
	organizations
58	Relevant theories of risk perception
58	Cultural Theory
60	Psychometric paradigm
60	Social amplification of risk
61	Good communication
61	Effective communication and dialogue among
	all stakeholders
62	Effective dialogue with the media
64	Summary and conclusions
66	Recommendations
66	Nanotechnology applications
66	Risk assessment
68	Stakeholder confidence
70	References

Appendices

- 87 Appendix 1. Core Group meeting outcome note
- 92 Appendix 2. Call for experts and information
- 97 Appendix 3. Briefing note for participants
- **99** Appendix 4. List of current and projected nanotechnology applications in the food and agriculture sectors
- **103** Appendix 5. Case studies and illustrative examples
- 103 Case Study 1. ß-cyclodextrin as a nanocarrier
- 104 Case Study 2. Zinc oxide as an antimicrobial in food contact material (hypothetical)
- 106 Appendix 6. Nanotechnology dialogues
- 109 Appendix 7. Topics and processes for nanotechnology dialogues

预览已结束, 完整报告链

https://www.yunbaogao.cn/report/index/