

INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY

Environmental Health Criteria 239 Principles for Modelling Dose–Response for the Risk Assessment of Chemicals

IOMC

INTER-ORGANIZATION PROGRAMME FOR THE SOUND MANAGEMENT OF CHEMICALS A cooperative agreement among UNEP, ILO, FAO, WHO, UNIDO, UNITAR and OECD

This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization or the World Health Organization.

Environmental Health Criteria 239

PRINCIPLES FOR MODELLING DOSE–RESPONSE FOR THE RISK ASSESSMENT OF CHEMICALS

First draft prepared by the WHO Task Group on Environmental Health Criteria on Principles for Modelling Dose–Response for the Risk Assessment of Chemicals

Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals.

The **International Programme on Chemical Safety (IPCS)**, established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO) and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals.

The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research and the Organisation for Economic Cooperation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.

WHO Library Cataloguing-in-Publication Data

Principles for modelling dose-response for the risk assessment of chemicals.

(Environmental health criteria; 239)

1.Chemicals. 2.Dose-response relationship, Drug. 3.Dose-response relationship, Radiation. 4.Risk assessment. 5.Environmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series.

ISBN 978 92 4 157239 2 ISSN 0250-863X (NLM classification: QV 38)

© World Health Organization 2009

All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: <u>bookorders@who.int</u>). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: <u>permissions@who.int</u>).

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

The named authors alone are responsible for the views expressed in this publication.

This document was technically and linguistically edited by Marla Sheffer, Ottawa, Canada, and printed by Wissenchaftliche Verlagsgesellschaft mbH, Stuttgart, Germany.

CONTENTS

ENVIRONMENTAL HEALTH CRITERIA ON PRINCIPLES FOR MODELLING DOSE-RESPONSE FOR THE RISK ASSESSMENT OF CHEMICALS

PR	EAMB	DLE	ix
PR	EFACI	Ξ	xvii
AC	RONY	MS AND ABBREVIATIONS	xix
1.	SUM RECO	MARY, CONCLUSIONS, AND OMMENDATIONS	1
	1.1 1.2 1.3	Summary Conclusions Recommendations	1 5 6
2.	INTR	ODUCTION	9
	2.1 2.2	Background Scope	10 10
3.	RISK	ANALYSIS	13
	3.1 3.2 3.3	Decision paradigms Risk analysis paradigms Motivations and considerations for producing a formal risk assessment	13 13 15
		3.3.1 Transparency and justification3.3.2 Public health and individual health3.3.3 Quantification and computation3.3.4 Cost of assessment	15 15 16 17 17
	3.4	Risk assessment 3.4.1 Problem formulation 3.4.1.1 Defining the question 3.4.1.2 Prior knowledge 3.4.1.3 Desired outcomes	17 18 19 19 19
		3.4.2 Risk assessment outcomes	20

4.	DOS	E–RESPONSE MODELLING: BASIC CONCEPTS	22
	4.1	Introduction	22
	4.2	What is dose?	23
	4.3	What is response?	24
	4.4	What is a model?	25
	4.5	What is dose–response modelling?	27
	4.6	Risk versus safety in dose-response modelling	31
	4.7	Summary	33
5.	DOS	E-RESPONSE MODELLING: WHY AND WHEN	
	TO U	JSE IT	34
	5.1	Historical perspectives	34
		5.1.1 The no-observed-adverse-effect level approac	h
		to acceptable/tolerable daily intake	35
		5.1.2 The benchmark dose approach to	
		acceptable/tolerable daily intake	38
	5.2	Points of consideration	40
		5.2.1 General aspects of definition	41
		5.2.2 Estimation procedure	42
		5.2.3 Uncertainty	43
		5.2.4 Study design	44
		5.2.5 Biological information	46
		5.2.6 Comparison of experimental results	46
		5.2.7 Risk management perspectives	47
	5.3	Implementation issues	47
	5.4	Summary	48
6.	PRIN	CIPLES OF DOSE-RESPONSE MODELLING	49
	6.1	Data	49
		6.1.1 Selection of data	49
		6.1.2 Data types	49
	6.2	Models and distributions	51
		6.2.1 Dose–response models	51
		6.2.1.1 Continuous dose–response models	51
		6.2.1.2 Quantal dose–response models	53
		6.2.1.3 Thresholds	53
		6.2.1.4 Severity (degree of effect)	55
		6.2.1.5 Modelling with covariates	57

		6.2.1.6 Biologically based dose-response	
		models	57
		6.2.2 Statistical distributions	59
		6.2.2.1 Continuous distributions	59
		6.2.2.2 Discrete distributions	60
	6.3	Model fitting and estimation of parameters	61
		6.3.1 Criterion function	62
		6.3.2 Search algorithms	62
	6.4	Model comparison	63
	6.5	Representing uncertainty	65
		6.5.1 Sampling error	65
		6.5.2 Study error	66
		6.5.3 Model error	66
	6.6	Benchmark dose and benchmark response selection	73
	6.7	Summary	76
7.	COM	MUNICATING THE RESULTS OF	
	DOSI	E-RESPONSE MODELLING	78
	7.1	Introduction	78
	7.2	Incorporation of the outputs of dose-response	
		modelling into risk assessments	80
	7.3	Derivation of health-based guidance values	81
	7.4	Estimation of the margin of exposure	82
	7.5	Quantitative estimations of the magnitude of	
		the risk at levels of human exposure	83
	7.6	Presentation of results	84
		7.6.1 Tables	84
		7.6.2 Graphs	84
	7.7	Risk assessment context and questions	89
	7.8	Synopsis of approach to modelling	89
		7.8.1 Data sets	90
		7.8.2 Uncertainty	90
	7.9	Explaining/interpreting the output of the	
		dose-response analysis	91
		7.9.1 Outputs in the observable biological range	91
		7.9.1.1 Health-based guidance values	92
		7.9.1.2 Margin of exposure	92
		7.9.2 Outputs outside the observable biological	
		range	94
		7.9.2.1 Prediction of risks at specified	a -
		exposure levels	95

		7.9.2.2 Prediction of exposure levels	
		producing specified risk levels	96
		7.9.2.3 Uncertainty analyses	96
	7.10	Issues for risk managers	97
		7.10.1 Risk assessment issues	97
		7.10.1.1 Population versus individual effects	97
		7.10.1.2 Risk characterization	98
		7.10.2 Risk management issues	98
		7.10.2.1 Risk management options	98
		7.10.2.2 Cost-benefit and risk-benefit	
		analyses	99
		7.10.2.3 Acceptable level of risk	99
8.	CONO	CLUSIONS AND RECOMMENDATIONS	101
	8.1	Conclusions	101
	8.2	Recommendations	102
REFERENCES		103	
AN	NEX 1	: TERMINOLOGY	111
RES	SUME,	CONCLUSIONS ET RECOMMANDATIONS	123
RES	SUME	N, CONCLUSIONES Y RECOMENDACIONES	130

NOTE TO READERS OF THE CRITERIA MONOGRAPHS

Every effort has been made to present information in the criteria monographs as accurately as possible without unduly delaying their publication. In the interest of all users of the Environmental Health Criteria monographs, readers are requested to communicate any errors that may have occurred to the Director of the International Programme on Chemical Safety, World Health Organization, Geneva, Switzerland, in order that they may be included in corrigenda.

