Bacterial vaccines in clinical and preclinical development 2021

An overview and analysis

Bacterial vaccines in clinical and preclinical development 2021

An overview and analysis

2021 Bacterial vaccines in clinical and preclinical development: an overview and analysis

ISBN 978-92-4-005245-1 (electronic version) ISBN 978-92-4-005246-8 (print version)

© World Health Organization 2022

Some rights reserved. This work is available under the Creative Commons Attribution-Non Commercial-Share Alike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: "This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition".

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).

Suggested citation. Bacterial vaccines in clinical and preclinical development: an overview and analysis. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see https://www.who.int/ copyright.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.

Design and layout by 400 Communications Ltd

Contents

	Acknowledgements	iv
	Abbreviations	V
	Executive summary	vii
1.	INTRODUCTION	1
2.	RESULTS	4
	Summary of main findings	4
	Preclinical vaccine pipeline	4
	Clinical pipeline	7
	Vaccines being developed against WHO bacterial priority pathogens	11
	Group A: Pathogens with licensed vaccines	11
	Group B: Pathogens with feasible vaccine candidates in late-stage clinical development	30
	Group C: Pathogens which are feasible, but challenging as targets for vaccine development	41
	Group D: Pathogens which currently have low feasibility for vaccine development	55
3.	DISCUSSION	67
4.	CONCLUSIONS	72
5.	METHODOLOGY	73
	Scope	73
	Pathogen scope	73
	Inclusion/exclusion criteria	73
	Search strategy	74
	Clinical pipeline	74
	Preclinical pipeline	74
	A note on previous studies	74
	Data collection	74
	Feedback	75
	Limitations	75
	Feasibility assessments	75

REFERENCES

Acknowledgements

Thanks are due to the many people from different organizations and countries who contributed their time and expertise to the data gathering and analysis for this report.

The development of this report was led by the World Health Organization (WHO) Department of Immunization, Vaccines and Biologicals (IVB) jointly with the WHO Antimicrobial Resistance Division (AMR).

The following deserve particular recognition for the roles they played in the development of this report: Isabel Frost (WHO/IVB), who prepared the report and led the data curation and analysis, with support in data gathering from Richard Alm (Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator (CARB-X), United States of America (USA)); Hatim Sati (WHO/AMR), Mateusz Hasso-Agopsowicz (WHO/IVB), Peter Beyer (WHO/AMR), Pilar Garcia-Vello (WHO/AMR), and Valeria Gigante (WHO/AMR), who provided technical review and revisions; Kess Rowe (United Kingdom of Great Britain and Northern Ireland), who provided support in the composition of the first draft; and Taghreed Adams (WHO/Science Division), who developed the online dashboard.

Funding for this report was kindly provided by the Government of Germany.

Abbreviations

Ag	antigen	HICs	high-income countries
AMR	antimicrobial resistance	HKMS	heat-killed multi-serotype <i>Shigella</i>
BCG	Bacillus Calmette-Guérin		immunogens
BMGF	Bill & Melinda Gates Foundation	HLA	human leucocyte antigen
CF	colonization factor	HtrA	protease high temperature requirement A
CFA	colonization factor antigen	IATS	International Antigenic Typing Schema
CgoX	coproporphyrinogen oxidase	IAVI	International AIDS Vaccine Initiative
CHIM Controlled Human Infection Model		ICMR	Indian Council of Medical Research
CJCV	capsule conjugate <i>Campylobacter</i> vaccine	ICU	intensive care unit
		IDRI	Infectious Disease Research Institute
CMV	CMV cytomegalovirus		invasive non-typhoidal Salmonella
COPS	Group D core + O-polysaccharide	IPD	invasive pneumococcal disease
COVID-19	coronavirus disease	IVI	International Vaccine Institute
CP, CPS	capsular polysaccharide	LMICs	low- and middle-income countries
CS	coli surface	LPS	lipopolysaccharide
dmLT	double-mutant <i>Escherichia coli</i> heat-	LT	Escherichia coli heat-labile toxin
	labile toxin	MAPS	multiple antigen presenting system
dPNAG	deacylated poly-N-β-(1-6)-acetyl- glucosamine	MDR	multidrug-resistant
DT	diphtheria toxoid	MEFA	multiepitope fusion antigen
EPA	ExoProtein A; a detoxified form of <i>Pseudomonas aeruginosa</i> Exotoxin A	MIP	Mycobacterium indicus pranii
		MSM	men who have sex with men
ETEC	enterotoxigenic Escherichia coli	Mtb	Mycobacterium tuberculosis
ExPEC	extraintestinal pathogenic <i>Escherichia coli</i>	MVA	modified Vaccinia virus Ankara
FTA	fimbrial tip adhesin	NDA	New Drug Application
GAPDH	glyceraldehyde 3-phosphate	NIAID	National Institute of Allergy and Infectious Disease
Gates MRI	dehydrogenase Bill & Melinda Gates Medical Research	NICED	National Institute of Cholera and Enteric Diseases
	Institute	NICHD	National Institute of Child Health and
Gavi	Gavi, the Vaccine Alliance		Human Development
GGT	gamma-glutamyl transpeptidase	NIH	National Institutes of Health
GHIT	Global Health Innovative Technology Fund	NIHCC	NIH Clinical Center
GMMA	generalized modules for membrane	NMRC	Naval Medical Research Center
	antigens	NOMVs	native outer membrane vesicles
GVGH	GSK Vaccine Institute for Global Health	NRA	national regulatory authority
Hib	Haemophilus influenzae type B	NTS	non-typhoidal <i>Salmonella</i>

OMP	outer membrane protein		
OMV	outer membrane vesicle		
PBPV	protein-based pneumococcal vaccine		
PCV	pneumococcal conjugate vaccine		
PDVAC	Product Development for Vaccines Advisory Committee		
Pephyd	peptidoglycan hydrolase		
PPrV	pneumococcal protein vaccine		
PSSP-1	pan- <i>Shigella</i> surface protein 1		
PPSV	pneumococcal polysaccharide vaccine		
R&D	research and development		
rBCG	recombinant BCG		
rTSST-1v	recombinant toxic shock syndrome toxin-1 variant		
SARS-CoV-2	severe acute respiratory syndrome coronavirus 2		
SEB	staphylococcal enterotoxin B		
ser.	serovar		
spp.	species		
SSI	Staten Serum Institute		
SsIE	secreted and surface-associated lipoprotein from <i>Escherichia coli</i>		
ST	Escherichia coli heat-stable toxin		
ТВ	tuberculosis		
TBVI	TuBerculosis Vaccine Initiative		
TCV	typhoid conjugate vaccine		
TLR	toll-like receptor		
TPI	triose-phosphate isomerase		
TPP	target product profile		
TPV	typhoid polysaccharide vaccine		
ТТ	tetanus toxoid		
UPEC	uropathogenic Escherichia coli		
US FDA	US Food and Drug Administration		
UTI	urinary tract infection		
Vi	capsular virulence antigen		
ViPS	Vi polysaccharide		

virG	<i>Shigella</i> outer membrane protein essential for bacterial spreading		
WHO	World Health Organization		
WHO SAGE	WHO Strategic Advisory Group of Experts on Immunization		
WHO BPPL	WHO Bacterial Priority Pathogens List		
WRAIR	Walter Reed Army Institute of Research		

Executive summary

Vaccines can be highly effective tools in combating antimicrobial resistance (AMR). They reduce the incidence of both resistant and susceptible infections, thereby also decreasing antibiotic consumption. Advances in vaccine technology in recent decades have made developing vaccines against previously challenging targets possible. There is a need to understand what vaccines are currently in development and those which may be available as tools to contribute to controlling AMR in the future. This analysis considers vaccine candidates in preclinical and clinical development against pathogens on the 2017 WHO Bacterial Priority Pathogens List (WHO BPPL), in addition to *Clostridioides difficile* and *Mycobacterium tuberculosis*. Sixty-one vaccine candidates in active clinical development and 94 candidates in confirmed active preclinical development were identified.

The report identified four groups of pathogens with vaccine candidates in various stages of clinical development, and with varying degrees of feasibility for vaccine development.

The first group (Group A) contains pathogens with vaccines already licensed. These exist against four priority pathogens for AMR: *Salmonella enterica* ser. Typhi, *Streptococcus pneumoniae, Haemophilus influenzae* type b (Hib), and *Mycobacterium tuberculosis*. The effectiveness of the vaccine against S. pneumoniae dramatically reduced mortality in the United States of America (USA) and Europe in comparison to other regions where the vaccine is not widely available and used. The coverage of authorized vaccines should be increased to maximise their impact on AMR. Current Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis (TB) do not adequately protect against TB and the development of more effective vaccines against TB should be accelerated.

The second group (Group B) includes pathogens with vaccines that are in late-stage clinical trials with high development feasibility: extraintestinal pathogenic *Escherichia coli* (ExPEC), *Salmonella enterica* ser. Para-typhi A, *Neisseria gonorrhoeae*, and *Clostridioides difficile*. Hence, for two out of the six leading pathogens for deaths associated with AMR (1), a vaccine either already exists, as for *S. pneumoniae*, or maybe feasible, as for *E. coli*. R&D efforts and development of vaccines in late-stage clinical trials should be continued and where possible accelerated.

The third group (Group C) contains pathogens with vaccine candidates either in early clinical trials or with moderate to high feasibility of vaccine development: enterotoxigenic *E. coli* (ETEC), *Klebsiella pneumoniae*, non-typhoidal *Salmonella* (NTS), *Campylobacter* spp., and *Shigella* spp. Vaccines against these pathogens might be available in the long term, however, short term solutions to prevent resistance should focus on other interventions to reduce AMR.

The fourth group (Group D) contains pathogens with a small number or no vaccine candidates in the pipeline and low vaccine development feasibility: *Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter* spp., *Enterococcus faecium, Staphylococcus aureus,* and *Helicobacter pylori*. Vaccines against these pathogens are unlikely to be available in the short term, and alternative interventions to prevent AMR caused by these pathogens should be considered. It is even more worrying that the drug development pipeli-

预览已结束,完整报告链接和二维码如下:

https://www.yunbaogao.cn/report/index/report?reportId=5 31472